• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sensory stimuli control dopamine in the brain

Bioengineer by Bioengineer
January 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: Research group Driever

Regardless of whether we are sitting in a loud aeroplane or walking through a quiet forest clearing, how humans perceive their environment depends on the stimuli. This, in turn, affects our behaviour – sometimes consciously, sometimes subconsciously. In their study of fish larvae, Prof. Dr. Wolfgang Driever and his team of neurobiologists at the University of Freiburg have discovered that a group of nerve cells in the forebrain release the neurotransmitter dopamine when activated by tactile or certain visual stimuli. These dopaminergic nerve cells send connections to almost all parts of the brain and spinal cord, thereby affecting the functions of many circuits. These new findings could play a role in the future treatment of such illnesses as restless leg syndrome, a condition in which patients have unpleasant sensations in their limbs during sleep. The researchers have published their research results in the journal Current Biology.

For their research, the scientists studied the four-millimetre-long larvae of zebrafish, which are common aquarium fish. The scientists observed the activity of individual dopaminergic nerve cells within the brains of the larvae, which were alert and active, under a microscope. The researchers were able to make their activity visible using optogenetic calcium sensors, which emit light in active nerve cells. Until now, studies of the dopaminergic nerve cells in vertebrates have primarily focused on the midbrain, where the dopaminergic cells are involved in the control of locomotion and reward behaviour. These become functionally impaired in patients with Parkinson's disease. The dopaminergic neurons of the forebrain, on the other hand, have been little researched until now because they are located deep in the brain and are therefore difficult to reach. In the forebrain, they are also connected to parts of the hypothalamus, which controls the switch in basic behaviour, such as fight or flight and rest or sleep.

The findings of the team of researchers from the University of Freiburg reveal that certain intense sensory stimuli may affect such basic behaviour through the activity of dopaminergic nerve cells. Because there are also connections between these nerve cells and the sensory organs, it is possible that dopaminergic nerve cells are involved in adjusting the sensitivity of sensory organs' reactions to stimuli. This function could be useful for treating diseases. The properties of dopaminergic nerve cells in the forebrain could thus be used in the future to reduce the sensation of patients with restless legs syndrome and hence to supress the tingling in their extremities that occurs when sleeping. Further research of these dopaminergic neurons is expected to help scientists understand how these diseases develop – and in general how humans adapt to quickly changing stimuli and sensations in their environments.

###

This research study was a collaboration with BIOSS Centre for Biological Signalling Studies, Cluster of Excellence at the University of Freiburg. Wolfgang Driever is a member of BIOSS and a professor at the Institute of Biology I at the University of Freiburg. Dr. Aristides Arrenberg is a researcher in Driever's lab and a recipient of the post-doc grant Eliteprogramm für Postdoktoranden from the Baden-Württemberg Stiftung.

Media Contact

Dr. Wolfgang Driever
[email protected]
49-761-203-2587

Startseite

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Social Factors on Prediabetes Mortality

November 16, 2025

Myocardium Suppression After Remdesivir in Congenital Heart Patients

November 16, 2025

WNT5A Boost in PCOS Alters Granulosa Cell Dynamics

November 16, 2025

Cellular Plasticity’s Impact on Metabolic Steatosis Explained

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Social Factors on Prediabetes Mortality

Myocardium Suppression After Remdesivir in Congenital Heart Patients

WNT5A Boost in PCOS Alters Granulosa Cell Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.