• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sensors harnessing light give hope in rehabilitation

Bioengineer by Bioengineer
August 29, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, a Korean company donated a wearable robot, designed to aid patients with limited mobility during their rehabilitation, to a hospital. These patients wear this robot to receive assistance for muscle and joint exercises while performing actions such as walking or sitting. Wearable devices including smartwatches or eyewear that people wear and attached to their skin have the potential to enhance our quality of life, offering a glimmer of hope to some people much like this robotic innovation.

Figure 1

Credit: POSTECH

Recently, a Korean company donated a wearable robot, designed to aid patients with limited mobility during their rehabilitation, to a hospital. These patients wear this robot to receive assistance for muscle and joint exercises while performing actions such as walking or sitting. Wearable devices including smartwatches or eyewear that people wear and attached to their skin have the potential to enhance our quality of life, offering a glimmer of hope to some people much like this robotic innovation.

 

The strain sensors used in these rehabilitative robots analyze data by translating specific physical changes in specific regions into electric signals. Notably flexible, these sensors are pliable and adept at gauging even the most subtle bodily changes as they are made from lightweight materials for ease of attachment to the skin. However, conventional soft strain sensors often exhibit inadequate durability due to susceptibility to external factors such as temperature and humidity. Furthermore, their complicated fabrication process poses challenges for widespread commercialization.    

 

A research team led by Professor Sung-Min Park from the Department of Convergence IT Engineering and the Department of Mechanical Engineering and PhD candidate Sunguk Hong from the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH) has successfully overcome the limitations of these soft strain sensors by integrating computer vision technology into optical sensors. Their research findings were featured in npj Flexible Electronics, the world-renowned journal.

 

The research team developed a sensor technology known as computer vision-based optical strain (CVOS) during their study. Unlike conventional sensors reliant on electrical signals, CVOS sensors employ computer vision and optical sensors to analyze microscale optical patterns, extracting data regarding changes. This approach inherently enhances durability by eliminating elements that compromise sensor functionalities and streamlining fabrication processes, thereby facilitating sensor commercialization.

 

In contrast to conventional sensors that solely detect biaxial strain, CVOS sensors exhibit the exceptional ability to detect three-axial rotational movements through real-time multiaxial strain mapping.  In essence, these sensors enable the precise recognition of intricate and various bodily motions through a single sensor. The research team substantiated this claim through experiments applying CVOS sensors to assistive devices in rehabilitative treatments.

 

Through integration of an AI-based response correction algorithm that corrects diverse error factors arising during signal detection, the experiment results showed a high level of confidence. Even after undergoing more than 10,000 iterations, these sensors consistently maintained their exceptional performance.

 

Professor Sung-Min Park who led the research explained, “The CVOS sensors excel in distinguishing body movements across diverse direction and angles, thereby optimizing effective rehabilitative interventions.” He further added, “By tailoring design indicators and algorithms to align with specific objectives, CVOS sensors have boundless potential for applications spanning industries.”



Journal

npj Flexible Electronics

DOI

10.1038/s41528-023-00264-1

Article Title

Real-time multiaxial strain mapping using computer vision integrated optical sensors

Article Publication Date

10-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Transforming Biomedical Engineering Education in the Philippines

August 28, 2025

TLR4 Polymorphisms Increase Risk in CMV-Positive Pregnancies

August 28, 2025

Advancing Diabetes Care: The Role of CGM Systems

August 28, 2025

Diabetes, Pain, and Medication: A Palestinian Study

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Biomedical Engineering Education in the Philippines

TLR4 Polymorphisms Increase Risk in CMV-Positive Pregnancies

Advancing Diabetes Care: The Role of CGM Systems

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.