• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sensor disguised as a sea turtle egg allows conservationists to remotely predict nest hatching time

Bioengineer by Bioengineer
October 26, 2022
in Biology
Reading Time: 4 mins read
0
With the help of the TurtleSense system, Olive Ridley hatchlings safely make their way to the ocean on the Pacific coast of Costa Rica.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new low-cost sensor designed to resemble a sea turtle egg enables scientists to monitor nests remotely and predict when hatchlings will emerge almost to the day – providing valuable information for conservation efforts and turtle nest management. Erin Clabough of the University of Virginia and Samuel Wantman of Nerds Without Borders led the research, which publishes on October 26 in the open-access journal PLOS ONE.

With the help of the TurtleSense system, Olive Ridley hatchlings safely make their way to the ocean on the Pacific coast of Costa Rica.

Credit: Erin Clabough, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

A new low-cost sensor designed to resemble a sea turtle egg enables scientists to monitor nests remotely and predict when hatchlings will emerge almost to the day – providing valuable information for conservation efforts and turtle nest management. Erin Clabough of the University of Virginia and Samuel Wantman of Nerds Without Borders led the research, which publishes on October 26 in the open-access journal PLOS ONE.

Sea turtle populations worldwide are in decline due to human activities, with Loggerhead, Green, Hawksbill, Kemp’s Ridley, Leatherback and Olive Ridley sea turtles all listed as threatened species. Sea turtle conservation efforts largely focus on protecting vulnerable hatchlings once they emerge, to ensure they head out to sea, instead of toward the bright lights of towns. Conservationists can count the days since eggs were laid to predict when they will hatch and then watch the nest, but these efforts are inaccurate and labor-intensive.

In the current study, researchers used the TurtleSense system to monitor loggerhead sea turtle nests on Cape Hatteras National Seashore to see if they could predict more accurately when the turtles would emerge from the nest. They buried an egg-sized sensor within the nest and attached a cable to a communication tower that remotely transmitted data on the movement of hatchlings within the nest.

The researchers identified a pattern of intense hatchling movement within the nest, followed by a pause, which let them predict almost the exact day when the young turtles would dig out of the sand. Their results suggest that hatchlings can detect motion, which allows them to communicate and head out together as a group. The system also accurately identified non-viable nests where monitoring was no longer necessary.

The new TurtleSense system has the potential to reduce the cost and labor required to monitor endangered turtle nests and to help conservationists make better decisions about nest management. The system can also shorten beach closures and enable communities to engage in turtle-based ecotourism, benefiting both the community and sea turtle conservation efforts. While this study focused on Loggerhead turtles, the researchers also monitored Olive Ridley and Green Turtle nests and saw similar patterns, suggesting that the system will work for a range of sea turtle species. 

Erin Clabough adds: “It’s absolutely magical to witness baby turtles poke their heads out of the sand and sprint towards the ocean, but it’s an event that can be very hard to predict. The TurtleSense system is a low-cost, creative solution that remotely allows us to detect how baby turtles synchronize developmental movement within the nest in real time. We can use the system to detect hatching and to better predict when the hatchlings will emerge onto the beach.”

Samuel Wantman adds: “As each turtle emerges from its shell, it climbs up to join its siblings at the top of the clutch of eggs, creating a wave of commotion among all the other baby turtles in the nest.  When there is no more commotion there is a period of quiet, which may be the impetus for all the hatchlings to boil out of the nest together.”

#####

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275088

Citation: Clabough EBD, Kaplan E, Hermeyer D, Zimmerman T, Chamberlin J, Wantman S (2022) The secret life of baby turtles: A novel system to predict hatchling emergence, detect infertile nests, and remotely monitor sea turtle nest events. PLoS ONE 17(10): e0275088. https://doi.org/10.1371/journal.pone.0275088

Author Countries: USA

Funding: This work was supported by volunteer work, donations, and by agreements listed in the acknowledgments section between the Hatteras Island Ocean Center nonprofit and the National Park Service. This work was also supported by the Virginia Foundation for Independent Colleges in the form of a grant awarded to EC. This works was also supported by the Hampden-Sydney Honors Program in the form of a grant awarded to JC.



Journal

PLoS ONE

DOI

10.1371/journal.pone.0275088

Method of Research

Observational study

Subject of Research

Animals

Article Title

The secret life of baby turtles: A novel system to predict hatchling emergence, detect infertile nests, and remotely monitor sea turtle nest events

Article Publication Date

26-Oct-2022

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Key Genes for Fish Adaptation: Spotlight on Mechanisms

October 2, 2025
Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

October 2, 2025

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    70 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Islet Macrophages Remodeled by Limited β-Cell Death

Exploring Disordered Eating and Identity in Students

Cysteine Boosts Gut Stem Cells via IL-22

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.