• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sensitive sensor detects Down syndrome DNA

Bioengineer by Bioengineer
February 13, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

According to the Centers for Disease Control and Prevention, Down syndrome is the most common birth defect, occurring once in every 700 births. However, traditional non-invasive prenatal tests for the condition are unreliable or carry risks for the mother and fetus. Now, researchers have developed a sensitive new biosensor that could someday be used to detect fetal Down syndrome DNA in pregnant women’s blood. They report their results in the ACS journal Nano Letters.

Characterized by variable degrees of intellectual and developmental problems, Down syndrome is caused by the presence of an extra copy of chromosome 21. To screen for the condition, pregnant women can have ultrasound scans or indirect blood biomarker tests, but misdiagnosis rates are high. Amniocentesis, in which doctors insert a needle into the uterus to collect amniotic fluid, provides a definitive diagnosis, but the procedure poses risks to both the pregnant woman and the fetus. The emerging method of whole-genome sequencing is highly accurate, but it is a slow and expensive process. Zhiyong Zhang and colleagues wanted to develop a fast, sensitive and cost-effective test that could detect elevated DNA concentrations of chromosome 21 DNA in pregnant women’s blood.

The researchers used field-effect transistor biosensor chips based on a single layer of molybdenum disulfide. They attached gold nanoparticles to the surface. On the nanoparticles, they immobilized probe DNA sequences that can recognize a specific sequence from chromosome 21. When the team added chromosome 21 DNA fragments to the sensor, they bound to the probes, causing a drop in the electrical current of the device. The biosensor could detect DNA concentrations as low as 0.1 fM/L, which is much more sensitive than other reported field-effect transistor DNA sensors. The researchers say that eventually, the test could be used to compare levels of chromosome 21 DNA in blood with that of another chromosome, such as 13, to determine if there are extra copies, suggesting a fetus has Down syndrome.

###

The authors acknowledge funding from the National Key Research & Development Program, the National Natural Science Foundation of China and the Beijing Municipal Science and Technology Commission.

The paper’s abstract will be available on February 13 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b03818

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: BiochemistryBiodiversityBioinformaticsBiologyChemistry/Physics/Materials SciencesDevelopmental/Reproductive BiologyDiagnosticsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.