• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Sensing water for smarter agriculture

Bioengineer by Bioengineer
February 9, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Smart electronic soil sensors could enable farmers to deliver tailored doses of water to their crops, maximizing food production while saving water. KAUST researchers have developed a rapid and sensitive soil moisture sensor, at the heart of which sits a metal-organic framework (MOF) with a very high affinity for water.

Sensing water for smarter agriculture

Credit: © 2023 KAUST; Morgan Bennett Smith.

Smart electronic soil sensors could enable farmers to deliver tailored doses of water to their crops, maximizing food production while saving water. KAUST researchers have developed a rapid and sensitive soil moisture sensor, at the heart of which sits a metal-organic framework (MOF) with a very high affinity for water.

 

Efficient water usage is a key challenge for farmers faced with feeding the growing global population in the face of climate change. “Irrigation management can help improve crop quality, decrease agricultural costs and preserve water,” says Mohamed Eddaoudi, who led the research along with Khaled Salama. “Highly sensitive and selective soil-moisture sensors offer the potential to improve the water management process,” Salama adds.

MOFs may be well suited to soil moisture sensing, Eddaoudi and his collaborators have shown. MOFs are highly porous synthetic materials with a cage-like internal structure that can be tailored to host specific small molecules, including water. “With their modular porous structure and easy functionalization, MOFs are excellent candidates for sensing applications,” says Osama Shekhah, a research scientist in Eddaoudi’s team. “MOF thin films have already been incorporated into electronic devices, paving the way for their translation to real-world use,” he adds.

 

The MOFs in the study were selected based on their hydrolytic stability, water capacity and water uptake. “We explored several different MOFs, including the highly porous Cr-soc-MOF-1 developed by our group at KAUST that can capture twice its own weight in water,” says Ph.D. student Norah Alsadun.

 

The team coated the MOFs onto an inexpensive interdigitated electrode microsensor that can be fabricated by inkjet printing or laser etching. When this sensor was inserted into moist soil, air in the MOF was displaced by water, altering its electrical capacitance, a process that can be detected and measured.

 

Each MOF device was tested in clayey and in loamy sand soil types, which can show significant differences in texture and water-holding capacity. “Notably, the Cr-soc-MOF-1-coated soil-moisture sensor showed the highest sensitivity, of about 450 percent in clayey soil, with a response time of around 500 seconds,” Salama says. The sensor’s response was highly selective for water even when various metal ions were present in the soil.

 

“We are now designing and developing a portable prototype MOF-based soil moisture sensor that can be easily used for control experiments in real-world, in-field measurements,” Eddaoudi says. “We anticipate that MOF-based soil-moisture sensors will advance the next-generation soil-moisture sensor technology, offering automated and precise irrigation systems,” Salama adds.

 



Journal

ACS Applied Materials & Interfaces

DOI

10.1021/acsami.2c20141

Article Title

Institution of Metal–Organic Frameworks as a Highly Sensitive and Selective Layer In-Field Integrated Soil-Moisture Capacitive Sensor

Article Publication Date

20-Jan-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Polycystic Ovary Syndrome Affects Atherogenic Plasma Index

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.