• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Semiconductor nanogrooves enhanced broad spectral band mmW and THz detection

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Jinchao Tong, Fei Suo, Tianning Zhang, Zhiming Huang, Junhao Chu and Dao Hua Zhang

Millimetre and terahertz wave detectors have a wide range of applications in areas such as communications, security, biological diagnosis, spectroscopy, and remote sensing. They are the components that can transform light information loaded by long-wavelength millimetre and terahertz waves into electrical signals. High-performance room-temperature detectors with high sensitivity, fast response, broad spectral bandwidth, and possibility to be extended to large format arrays are always pursued. They are the building blocks for a wide range of millimetre and terahertz wave related systems, including communication network, deep space exploration equipment, security screening system, spectroscopy system, and material composition inspection. However, conventional efficient photoexcitation in optoelectronic semiconductors seems not applicable due to small quantum energy of millimetre and terahertz waves and strong background thermal disturbances. Although Golay cells, pyroelectrics, bolometers, and Schottky barrier diodes (SBDs) are in widespread use, they suffer from poor noise equivalent power (NEP) (only 10-9-10-10 W Hz-1/2 level for Golay cells and pyroelectrics), slow response (ms level for Golay cells, pyroelectrics), or narrow spectral bandwidth (multiple modules for SBDs to achieve broad spectral bandwidth).

In a new paper published in Light Science & Application, Professor Dao Hua Zhang and Presidential Postdoctoral Fellow Jinchao Tong from the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore and co-workers reported millimetre and terahertz wave detectors based on epitaxially grown InSb/AlInSb/GaSb/GaAs by molecular-beam epitaxy (MBE) with nanogroove array for enhancement. The InSb films in such a novel structure possess high electron mobility and negative permittivity in a broad millimetre and terahertz wave band, and further, it is suitable for fabrication of large format arrays. A broad spectral bandwidth planar equiangular spiral antenna is designed to efficiently couple millimetre and terahertz waves. A nanogroove array is fabricated in the InSb layer, which can arouse strong excitation of millimetre and terahertz wave surface plasmon polaritons (SPPs), especially at the InSb-air interfaces, leading to a general improvement of 50-100% for detection performance. A NEP of 2.2×10-14 W Hz-1/2 or a detectivity (D*) of 2.7×1012 cm Hz1/2 W-1 is achieved at 1.75 mm (0.171 THz) at room temperature. The device also shows a broad spectral band detection from 0.9 mm (0.330 THz) to 9.4 mm (0.032 THz) and a fast response speed of 3.5 μs. By moderately decreasing the temperature to the thermoelectric cooling of 200 K, the corresponding NEP, D* and response speed can be further improved to 3.8×10-15 W Hz-1/2, 1.6×1013 cm Hz1/2 W-1 and 780 ns, respectively.

The detection of the detector is based millimetre and terahertz wave SPPs induced nonequilibrium electrons. Under external bias, unidirectional drift of these carriers will form photocurrent. The newly developed detector has a few advantages compared to current technologies. High sensitivity: the achieved NEP is 2-3 order superior to state-of-the-art. Uncooled operation: no cooling technology is required for its normal operation. Broad spectral band detection: A single detector can performance detection in 0.9-9.4 mm. Easy to be extended: this detector is based on wafer-scale InSb. Fast response speed: the detector has a response speed of μs level at room temperature. Simple configuration: the detector is based on very simple two-terminal structure.

###

Media Contact
Dao Hua Zhang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-021-00505-w

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Genetic Diversity in Mediterranean Durum Wheat

CMS Screening Mandate’s Effect on Inpatient Z-Code Usage

Examining Psychosocial Allostatic Load in Nursing Practice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.