• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Semiconductor material analysis made possible with artificial intelligence

Bioengineer by Bioengineer
December 16, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Instant analysis of magnetic Hamiltonian parameters through electron microscopy. Research on magnetic Hamiltonian parameters using deep learning techniques by KIST-Kyung Hee University collaborative research team

IMAGE

Credit: Korea Institute of Science and Technology(KIST)

Studies on spintronics, which deal with the intrinsic spin of electrons and the field of electronic engineering, are actively conducted to address the limitation of integration level of silicon semiconductors currently in use and to develop ultra-low-power and high-performance next-generation semiconductors. Magnetic materials are one of the most commonly used materials to develop spintronics devices such as magneto-resistive random-access memory (MRAM). Therefore, it is essential to accuratly identify various properties of the magnetic materials, such as thermal stability, dynamic behaviors, and the ground state configuration, through the analysis of the magnetic Hamiltonian and its parameters.

Previously, the magnetic Hamiltonian parameters were directly measured through various experiments in order to acquire more accurate and deeper understanding of the properties of magnetic materials, and such processes required extensive amount of time and resources.

To overcome these limitations, researchers in South Korea have developed an artificial intelligence (AI) system that can analyze magnetic systems in an instant. The Korea Institute of Science and Technology (KIST) reported that the collaborative research team led by Dr. Heeyong Kwon and Dr. Junwoo Choi from Spin Convergence Research Center and Professor Changyeon Won from Kyung Hee University developed a technique for estimating magnetic Hamiltonian parameters from spin structure images using AI techniques.

They consturcted a deep neural network structure and trained it with machine learning algorithms and existing magnetic domain images. As a result, the magnetic Hamiltonian parameters could be estimated in real-time by inputting spin structure images obtained from electron microscope. Further, when compared with the experimentally investigated parameter values, the estimation errors of the AI system were less than 1%, indicating high estimation accuracy. According to the team, the developed AI system is capable of completing material parameter estimation process that previously took up to tens of hours in an instant by using deep learning techniques.

“We presented a novel approach on how AI technologies can be implemented to analyze the properties of magnetic systems,” Dr. Hee-young Kwon at KIST said. “We expect that new methods for studying physical systems using such AI technologies will be able to reduce the gap between experimental and theoretical aspects, and will further lead to expanding a new research field called convergence of AI technology and fundamental science research.”

###

This study was carried out with a grant from the Ministry of Science and ICT (MSIT), as part of the Institutional R&D Program of KIST, and Basic Science Research Program funded by the Ministry of Education . The findings were reported in the latest edition of the international journal, ‘Science Advances‘(IF: 13.11, Top 4.93% in the field of JCR).

Media Contact
Do-Hyun Kim
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abb0872

Tags: Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amygdala Noise Boosts Exploration During Threat

AI Unveils IVIG-Resistant Kawasaki Disease in Shandong

Challenges in AI-Driven Virtual Cells for Cancer Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.