• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Semiconductor manufacturing techniques employed for new gamma-ray detector

Bioengineer by Bioengineer
August 3, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NASA/Theresa Johnson

NASA astrophysicists and engineers are adapting detectors used by earthbound supercolliders and creating them the same way electronics companies produce all modern consumer devices, including cell phones and laptops.

The new pixel-based silicon detector technology could be used on next-generation gamma-ray observatories to detect highly energetic photons emanating from the most powerful events in the universe, including colliding galaxies and black holes. The new detectors would sense these photons much like a digital camera and use far less power than current space-based detectors.

Underground supercolliders, which have experiments employing the same silicon pixel-type detectors, accelerate protons and ions to near the speed of light in opposite directions at very high energies. Their collisions are designed to recreate the conditions that governed the universe after the Big Bang. Although highly efficient, current silicon pixel technology requires a lot of power, which would be a challenge if used in space where power is normally derived from solar panels.

Enter AstroPix

“The challenge is finding the best way to reduce the amount of power the pixel needs to use since instruments on the ground have access to all the power they want,” said Regina Caputo, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a fellow with NASA’s Nancy Grace Roman Technology Fellowship program. She is the principal investigator of Goddard’s detector-development effort called AstroPix.

Caputo and her team, which includes Goddard astrophysicist Jeremy Perkins and postbaccalaureate researcher Isabella Brewer, initially began their work with support from Goddard’s Internal Research and Development (IRAD) program. The team has since secured technology-development support from NASA’s Astrophysics Research and Analysis (APRA) program.

Like the particle physics community, Caputo is experimenting with a manufacturing process called complementary metal oxide semiconductor, or CMOS, which NASA’s Jet Propulsion Laboratory finessed for spaceflight applications. The semiconductor industry uses this technique to make modern electronic devices. “This process allows us to not only collect energy from particles that enter the detector, but also to amplify their signals all in the same detector material. This makes these detectors less expensive and noisy,” Caputo said.

With the APRA award, Caputo and her team are designing new pixel detectors optimized for potential use in space. They have sent their first version of AstroPix to a semiconductor foundry — the same facilities that manufacture computer chips — for fabrication.

“We hope to get AstroPix back this summer for testing,” she said. “This is progress.”

Detector Advantages

AstroPix’s advantage is best illustrated by comparing it with detectors flying on the Fermi Gamma-ray Space Telescope. Fermi also uses silicon-based detectors, but its sensors are comprised of silicon strips that are assembled in layers. These layers cross one another perpendicularly to create a grid that pinpoints the locations of high-energy particles created when a gamma ray hits a detector.

With AstroPix, however, particles would be recorded once they contacted a single pixel instead of silicon strip layers, giving the detector the ability to create a map of the particles’ paths with fewer layers.

“Previous silicon strip-detecting technology went through a series of processes to convert charges to digital signals, while the new pixel-based technology can do all of them at once since the readout is integrated with each pixel, Caputo said. In this way, the pixel detector would reduce its power needs to function the best in space.

The team is testing the pixel detector in the astrophysics lab at Goddard using radioactive sources, such as cadmium, for the pixelated silicon to detect. The tests help determine whether the energy resolution of the pixel detector is the same or better than the silicon strip detectors. “These sources can partially reproduce the types of radiation found in space, although at a much lower dose,” Brewer said.

If Proven, Future Missions May Benefit

The AstroPiX team must prove the effectiveness of these silicon pixel detectors before the technology could be incorporated into a future gamma-ray mission, Perkins said. In fact, in addition to improved position sensitivity, energy resolution, and lower power consumption, the pixel detector technology would easily be the best choice for any particle-detecting mission because they are easy to produce and inexpensive, especially compared with silicon strip detectors.

###

For more news about Goddard technology, go to: https://www.nasa.gov/sites/default/files/atoms/files/summer_2020_final_web_version.pdf

By Theresa Johnson and Lori Keesey

NASA’s Goddard Space Flight Center, Greenbelt, Maryland

Media Contact
Lori Keesey
[email protected]

Original Source

https://www.nasa.gov/feature/goddard/2020/semiconductor-manufacturing-techniques-employed-for-new-gamma-ray-detector

Tags: Computer ScienceSpace/Planetary ScienceTechnology TransferTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pre-Treatment FDG PET/CT Predicts Rectal Cancer Response

August 4, 2025
Kinesin HUG1/2 Drive Male Germ Unit Transport

Kinesin HUG1/2 Drive Male Germ Unit Transport

August 4, 2025

Author Correction: Breakthroughs in Ultrafast Photonics Integration

August 4, 2025

Mapping Alveolar Cell Regeneration in Pulmonary Fibrosis

August 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    68 shares
    Share 27 Tweet 17
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pre-Treatment FDG PET/CT Predicts Rectal Cancer Response

Kinesin HUG1/2 Drive Male Germ Unit Transport

Author Correction: Breakthroughs in Ultrafast Photonics Integration

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.