• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Self-supervised AI learns physics to reconstruct microscopic images from holograms

Bioengineer by Bioengineer
August 7, 2023
in Chemistry
Reading Time: 3 mins read
0
GedankenNet
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the UCLA Samueli School of Engineering have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. 

GedankenNet

Credit: Credit: Ozcan Research Lab/UCLA

Researchers from the UCLA Samueli School of Engineering have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. 

In a recent paper published in Nature Machine Intelligence, UCLA’s Volgenau Professor for Engineering Innovation Aydogan Ozcan and his research team introduced a self-supervised AI model nicknamed GedankenNet that learns from physics laws and thought experiments. 

Artificial intelligence has revolutionized the imaging process across various fields — from photography to sensing. The application of AI in microscopy, however, has continued to face persistent challenges. For one, existing AI-powered models rely heavily on human supervision and large-scale, pre-labeled data sets, requiring laborious and costly experiments with numerous samples. Moreover, these methodologies often struggle to process new types of samples or experimental set-ups.

With GedankenNet, the UCLA team was inspired by Albert Einstein’s hallmark Gedanken experiment (German for “thought experiment”) approach using visualized, conceptual thought experiments in creating the theory of relativity. 

Informed only by the laws of physics that universally govern the propagation of electromagnetic waves in space, the researchers taught their AI model to reconstruct microscopic images using only random artificial holograms — synthesized solely from “imagination” without relying on any real-world experiments, actual sample resemblances or real data.

Following GedankenNet’s “thought training,” the team tested the AI model using 3D holographic images of human tissue samples captured with a new experimental set-up. In its first attempt, GedankenNet successfully reconstructed the microscopic images of human tissue samples and Pap smears from their holograms. 

Compared with state-of-the-art microscopic image reconstruction methods based on supervised learning using large-scale experimental data, GedankenNet exhibited superior generalization to unseen samples without relying on any experimental data or prior information on samples. In addition to providing better microscopic image reconstruction, GedankenNet also generated output light waves that are consistent with the physics of wave equations, accurately representing the 3D light propagation in space. 

“These findings illustrate the potential of self-supervised AI to learn from thought experiments, just like scientists do,” said Ozcan, who holds faculty appointments in the departments of Electrical and Computer Engineering, and Bioengineering at UCLA Samueli. “It opens up new opportunities for developing physics-compatible, easy-to-train and broadly generalizable neural network models as an alternative to standard, supervised deep learning methods currently employed in various computational imaging tasks.”

The other authors of the paper are graduate students Luzhe Huang (first author) and Hanlong Chen, as well as postdoctoral scholar Tairan Liu from the UCLA Electrical and Computer Engineering Department. Ozcan also holds a faculty appointment at the David Geffen School of Medicine at UCLA and is an associate director of the California NanoSystems Institute.



Journal

Nature Machine Intelligence

DOI

10.1038/s42256-023-00704-7

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

‘Self-supervised learning of hologram reconstruction using physics consistency’

Article Publication Date

7-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1231 shares
    Share 492 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Single-Cell ATAC-seq Data Integration Techniques

Exploring Alcohol Use and Anxiety Links via Analysis

Radioligand Therapy’s Impact on Neuroendocrine Tumors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.