• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Seeing through food and drug fakes and frauds

Bioengineer by Bioengineer
March 20, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘Chronoprints’ can identify a sample from a video taken as it reacts to disturbance

If we could tell authentic from counterfeit or adulterated drugs and foods just by looking at them, we could save money and lives every year, especially in the developing world, where the problem is worst. Unfortunately, the technologies that can detect what a sample is made of are expensive, energy-intensive, and largely unavailable in regions where they are needed most.

This may change with a simple new technique developed by engineers from the University of California, Riverside that can detect fake drugs from a video taken as the sample undergoes a disturbance.

If you’ve ever used online photo tools, you’ve probably seen how these tools use image analysis algorithms to categorize your photos. By distinguishing the different people in your photos, these algorithms make it easy to find all the photos of your daughter or your dad. Now, in the journal ACS Central Science, researchers report they have used these algorithms to solve a very different problem: identifying fake medicines and other potentially dangerous products.

Called “chronoprinting,” the technology requires only a few relatively inexpensive pieces of equipment and free software to accurately distinguish pure from inferior food and medicines.

The World Health Organization says that about 10 percent of all medicines in low- and middle-income countries are counterfeit, and food fraud is a global problem that costs consumers and industry billions of dollars per year. Fraudulent food and drugs waste money and jeopardize the health and lives of their consumers. But detecting fakes and frauds requires expensive equipment and highly trained experts.

William Grover, an assistant professor of bioengineering in UC Riverside’s Marlan and Rosemary Bourns College of Engineering, and Brittney McKenzie, a doctoral student in Grover’s lab, wondered if it would be possible to distinguish authentic from adulterated drugs and food by observing how they behave when disturbed by temperature changes or other causes. Two substances with identical compositions should respond the same way to a disturbance, and if two substances appear identical but respond differently, their composition must be different, they reasoned.

McKenzie designed a set of experiments to test this idea. She loaded samples of pure olive oil, one of the world’s most commonly adulterated foods, and cough syrup, which is often diluted or counterfeited in the developing world, into tiny channels on a microfluidic chip, and chilled it quickly in liquid nitrogen. A USB microscope camera filmed the samples reacting to the temperature change.

McKenzie and Grover wrote software that converts the video to a bitmap image. Because the image showed how the sample changed over time, the researchers called it a “chronoprint.”

The team then used image analysis algorithms to compare different chronoprints from the same substance. They found that each pure substance had a reliable chronoprint over multiple tests.

Next, they repeated the experiment with samples of olive oil that had been diluted with other oils and cough syrup diluted with water. The adulterated samples produced chronoprints that were different from the pure samples. The difference was so big, so obvious, and so consistent the researchers concluded that chronoprints and image analysis algorithms can reliably detect some types of food and drug fraud.

“The significant visual differences between the samples were both unexpected and exciting, and with them being consistent we knew this could be a useful way to identify a wide range of samples,” McKenzie said.

Grover said their technique creates a powerful new connection between chemistry and computer science.

“By basically converting a chemical sample to an image, we can take advantage of all the different image analysis algorithms that computer scientists have developed,” he said. “And as those algorithms get better, our ability to chemically identify a sample should get better, too.”

The researchers used liquids in their experiments but note the method could also be used on solid materials dissolved in water, and other types of disturbance, such as heat or a centrifuge, could be used for substances that don’t react well to freezing. The technique is easy to learn, making highly trained experts unnecessary. Chronoprinting requires hobbyist-grade equipment and software downloadable for free from Grover’s lab website, putting it well within reach of government agencies and labs with limited resources.

###

See how chronoprinting works in this video: https://youtu.be/qbyE68qD2Zo

McKenzie and Grover were assisted in this work by Philip Brisk, an associate professor of computer science at UCR, and Jessica Robles-Najar and Eric Duong, undergraduate bioengineering students.

The paper, “Chronoprints: Identifying samples by visualizing how they change over space and time,” by Brittney A. McKenzie, Jessica Robles-Najar, Eric Duong, Philip Brisk, and William H. Grover, is published in ACS Central Science.

The research was supported by grants from the National Science Foundation.

Media Contact
Holly Ober
[email protected]
http://dx.doi.org/10.1021/acscentsci.8b00860

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesComputer ScienceDisease in the Developing WorldPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial ChemistryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative mRNA Therapy Demonstrates Potential for Heart Regeneration Post-Heart Attack

Innovative mRNA Therapy Demonstrates Potential for Heart Regeneration Post-Heart Attack

July 31, 2025
Hidden “Superpowers” of Hibernators May Reside in Human DNA

Hidden “Superpowers” of Hibernators May Reside in Human DNA

July 31, 2025

Dietary Shifts Fueled Physical Evolution in Early Humans

July 31, 2025

Precision-Fermented Chicken Protein from Brewed Tested in Pet Food Trials

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

Lightning strikes kill 320 million trees annually, causing significant biomass loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.