• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Seeing the light: Researchers combine technologies for better light control

Bioengineer by Bioengineer
July 23, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New photonic integrated chip could enable developments for many optical technologies

IMAGE

Credit: Penn State College of Engineering

A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers. The new photonic integrated chip could allow for many advances in the optical field and industry, ranging from improvements in virtual-reality glasses to optical remote sensing, according to the researchers.

Led by Xingjie Ni, assistant professor of electrical engineering, the research was recently published in Science Advances. Penn State electrical engineering doctoral candidates Xuexue Guo, Yimin Ding, Xi Chen and Yao Duan were co-authors on the paper.

Traditionally, scientists have had two options when it comes to controlling light for use in various optical devices. The first is a photonic integrated circuit (PIC) that can be incorporated onto small chips but has limited ability to control free-space light — light propagating in air, outer space or a vacuum, as opposed to being guided in fibers or other waveguides. The second is a newly emergent metasurface — an artificially engineered thin layer that allows for light manipulation at subwavelength scale but cannot be integrated on a chip.

Ni and his fellow researchers solved this problem by incorporating the best qualities of the two previous options into a new, hybrid photonic architecture that has metasurfaces integrated onto a PIC chip while maintaining high light controllability.

“This incorporation of the PICs and metasurfaces makes it possible to drive the metasurfaces using guided waves inside the PICs,” Ni said. “It enables routing light among different metasurfaces, performing multiple complex functions on a single chip.”

This new development could have applications in optical communications, optical remote sensing — LiDAR — free-space optical interconnects for data centers and virtual reality and augmented reality displays. ?

“The developed technology will pave exciting ways for building multifunctional PIC devices with flexible access to free space as well as guided, wave-driven metasurfaces with full on-chip integration capability,” Ni said.

According to Ni, the most intriguing aspects of his research are the implications for future developments and the success of combining the best traits of existing technology.

“I think the most exciting part of the research is that we married two powerful technologies with complementary capabilities — integrated photonics and metasurfaces,” he said. “Our hybrid system has the advantages from both the metasurfaces and the PICs. In addition, our design is highly flexible and modular. A library of the building blocks can be established for reusing and creating consistent functional components across various devices or systems.”

###

Funding for this research came from the Gordon and Betty Moore Foundation, the National Aeronautics and Space Administration Early Career Faculty Award, the Office of Naval Research and the Penn State Materials Research Science and Engineering Center.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abb4142

Tags: Electrical Engineering/ElectronicsHardwareTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

November 2, 2025

New Guidelines for Managing Thrombosis in Burn Patients

November 2, 2025

Compact DAC Leveraging Optical Kerr Effect Innovations

November 2, 2025

Assessing Nursing Care Plan Writing: Validity Study

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

New Guidelines for Managing Thrombosis in Burn Patients

Compact DAC Leveraging Optical Kerr Effect Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.