• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

See how immune cells break through blood vessel walls

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Barzilai et al./Credit Required

In any given second, thousands of immune cells are poking holes in your blood vessels as they travel out of the blood stream to survey your organs for problems or join the fight against a pathogen. Despite the constant assault, the damage is negligible, and in a study, appearing January 17 in Cell Reports, researchers may reveal why: as immune cells squeeze their nuclei through blood vessel walls, the force breaks thin filaments that make up the cytoskeleton — the scaffold proteins that give a cell its shape — of individual endothelial cells that hold the wall together. These filaments are known to quickly be replaced.

"Initially we thought that immune cells just dissolve the entire cytoskeleton of these endothelial cells and then reseal everything, but we didn't find any sign of massive destruction," says senior author Ronen Alon, an immunologist and stem cell researcher at the Weizmann Institute of Science in Israel. "Following fluorescence imaging, electron microscopy, and ultrastructural analysis, we found a subset of very tiny, interlacing filaments that crisscross throughout thicker elastic fibers that comprise the individual blood vessel wall cells, and we think that these tiny filaments are the ones that break during leukocyte squeezing and then rapidly reassemble."

In general, the thin blood vessel walls crossed by infiltrating immune cells at most tissues are effective at keeping blood and circulating immune cells in and anything that doesn't belong out. When subsets of immune cells, white blood cells (leukocytes), encounter specific signals on blood vessels at nearby sites of infection or inflammation, these chemicals guide the immune cells to stop and exit the blood vessels. Shortly after arresting, leukocytes use additional chemoattractive signals to crawl, protrude and squeeze their bodies, generating pores or gaps with a diameter of 4 to 5 microns, which is about the diameter of their bulky nuclei.

The long-standing question has been whether these openings form because the blood vessel cells are contracting like small muscles in response to their interactions with arrested and crawling leukocytes. The Alon study, which was based on both in vitro and animal models, suggests that the openings in fact involve an active process imposed by the nuclei of the squeezing leukocytes: these nuclei are pushed forward by the leukocyte's own motors bending and snapping the various filaments that comprise the cytoskeleton of the endothelial cells breached by the squeezing leukocyte.

"We poisoned the contractile machinery of the blood vessel cells and immune cells could still normally squeeze through, generating large gaps and pores," says Alon. "This was a big surprise. We then used other biochemical manipulations, which have led to the conclusion that it is the breakage of the thin filaments of endothelial cells that open gaps in response to the squeezed nucleus of each immune cell acting like a drill."

There are more questions about the physics of how this is happening that need to be explored. The research is also relevant to cancer physiology, as tumor cells are much less efficient than leukocytes in their ability to move their nucleus forward and squeeze it through blood vessels at sites of metastasis.

###

This research was supported by the Israel Science Foundation, the Flight Attendant Medical Research Institute Foundation (FAMRI), U.S.A., and the Minerva Foundation, Germany.

Cell Reports, Barzilai et al.: "Leukocytes breach endothelial barriers by insertion of nuclear lobes and disassembly of endothelial actin filaments" http://www.cell.com/cell-reports/fulltext/S2211-1247(16)31798-3

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact [email protected].

Media Contact

Joseph Caputo
[email protected]
617-397-2802
@CellPressNews

http://www.cellpress.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

HIRAID Framework Enhances Nurse and Patient Outcomes

October 4, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

October 4, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIRAID Framework Enhances Nurse and Patient Outcomes

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.