• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Seasonal warming leads to smaller animal body sizes

Bioengineer by Bioengineer
March 29, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Curtis Horne

Changes in the body size of animals measured under controlled laboratory conditions have been shown to closely match changes in body size with seasonal warming in nature, according to research from Queen Mary University of London (QMUL).

Cold-blooded species rely on the temperature of their external environment to dictate their internal body temperature. When these species are reared in warmer conditions in the laboratory they usually develop faster, maturing at a smaller adult size. This biological phenomenon occurs in over 83 per cent of cold-blooded species.

Despite the huge number of environmental factors than can vary seasonally, and the potential limitations of the study, the researchers found a statistically significant match between body size responses to temperature measured in the laboratory and in nature, which suggests that they share common drivers.

The results, published in the journal Proceedings of the Royal Society B: Biological Sciences, are extracted from the largest ever analysis of data from studies on seasonal body size variation in arthropod species from locations around the globe.

Curtis Horne, from QMUL's School of Biological and Chemical Sciences, said: "Understanding how body size varies with temperature is crucial to understanding and predicting how species will cope in a warming world. Changes in the body size of species can impact the ecosystem services we rely on.

"Arthropods are of huge economic and ecological value to humans. For example, they include important species of pollinators, as well as zooplankton species, the most abundant animals in our ocean that form the basis of the food chain for commercially important fish species. It is in our interest to understand how these species will respond to warming."

He added: "Variation between species in the sensitivity of body size to warming can also give us an indication of why this response has evolved."

The findings show some species are likely to face a greater impact from climate warming and shifting seasonality.

In particular, aquatic species including important species of zooplankton, reduce their size much more with seasonal warming compared to species on land such as aphids and butterflies.

With oxygen availability decreasing in areas of the world's oceans there are potential implications for how oxygen and temperature will interact to influence body size in these sensitive aquatic species.

This research was a collaboration between QMUL and the University of Liverpool.

###

Media Contact

Rupert Marquand
[email protected]
@QMUL

http://www.qmul.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Skin Microbiome Changes in Multiple System Atrophy

August 23, 2025
Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skin Microbiome Changes in Multiple System Atrophy

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.