• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Searching the ancient depths of a reptilian genome yields insight into all vertebrates

Bioengineer by Bioengineer
August 12, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nicola Nelson

AMES, Iowa – Scientists searching the most ancient corners of the genome of a reptile native to New Zealand found patterns that help explain how the genomes of all vertebrates took shape, according to a recently published study.

The study, completed by a global team of collaborators and published in the journal Nature, details for the first time the assembled genome of the tuatara, a rare reptile species of great cultural significance to indigenous populations in New Zealand. The tuatara, whose ancestors once roamed the Earth with dinosaurs, is the last living species of the order Rhynchocephalia, a key link between ancient reptilian species and modern reptiles, birds and mammals, said Nicole Valenzuela, a professor of ecology, evolution and organismal biology at Iowa State University and co-author of the study. Valenzuela said a deep dive into the tuatara genome sheds light on the genomic structure of a huge range of species, including humans.

“Part of this research was the genealogy of the tuatara to help us figure out which branch of the tree of life it belongs to,” Valenzuela said. “We found it diverged from snakes and lizards around 250 million years ago.”

Lead author Neil Gemmell, a geneticist at New Zealand’s University of Otago, said the sequencing of the tuatara genome, which is 67% bigger than humans, has revealed a genomic architecture unlike anything previously reported. Gemmell said the genome helps confirm the evolutionary position and unique life history of this ancient reptile.

“If we consider a tree of life, with species diverging over time and splitting off into groups such as reptiles, birds and mammals, we can finally see with some certainty where the tuatara sits,” Gemmell said.

Valenzuela’s lab contributed an analysis of the distribution of cytosine and guanine, two of the four building blocks of the genetic alphabet, when they come together in the tuatara’s DNA (called CpG nucleotides). The study found patterns resembling those of painted turtles that are normally associated with the epigenetic regulation of gene expression. The researchers initially thought these patterns may have a connection with temperature-dependent sex determination, a trait shared by tuataras and painted turtles whereby temperatures influence the sex of young specimens as they develop in the egg. However, Valenzuela said further investigation found this characteristic of the tuatara’s genome is similar to most other vertebrates, including humans. That means this highly conserved genomic feature reaches back over 300 million years of evolution, she said.

This kind of research required the scientists to sift through the genome for clues.

“It’s like forensic science in the genome,” she said. “By reading the genome and picking out these footprints left by epigenetic processes, we see how that affects the sequence of the genome over hundreds of millions of years.”

The tuatara is of special significance to the Maori people of New Zealand, and the study authors worked in partnership with Maori representatives from the beginning of the research on all decision-making. Valenzuela said that kind of engagement with indigenous communities is rare in genomic projects published to date and could increase awareness of the conservation of the tuatara.

“It’s a template for future genomic efforts all over the world that can be adopted and improved upon,” Valenzuela said.

###

The project required the coordinated effort of 60 international collaborators from 15 institutions around the globe. Valeria Velásquez Zapata and Zhiqiang Wu, former members of Valenzuela’s laboratory at Iowa State, also co-authored the study.

Media Contact
Fred Love
[email protected]

Original Source

https://www.news.iastate.edu/news/2020/08/12/tuatara

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2561-9

Tags: BiodiversityBiologyEcology/EnvironmentEvolutionGenesGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unlocking Pacific Oyster Germ Cell Development Mysteries

October 24, 2025
blank

New Study Validates Effectiveness of DEI Programs: Research-Backed Defense Published Today

October 23, 2025

Adrenergic Receptors: Evolution in Pacific Oysters Uncovered

October 23, 2025

New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    180 shares
    Share 72 Tweet 45
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Silencing SOX2OT Lowers Lung Cancer Cell Aggressiveness

Intellectual Disability and Behavioral Issues in Fragile X

Factors Influencing Nurse Adverse Event Reporting in China

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.