• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Search-and-rescue proteins find, fix DNA mutations linked to cancer

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR–Proteins inside bacteria cells engage in "search-and-rescue"-type behavior to ferret out mismatched DNA and fix it to thwart dangerous mutations that can be associated with certain cancers, a University of Michigan study found.

It's long been known that the protein MutS can identify and fix DNA mismatches in the cells, but how it detected such rare events was unclear until now, said Lyle Simmons, U-M associate professor of molecular, cellular and developmental biology.

The findings, appearing in the Proceedings of the National Academy of Sciences, help further our understanding of how errors in DNA are found and corrected, Simmons said.

MutS is the first protein involved in DNA mismatch repair and is responsible for detecting rare errors that can predispose people to certain types of cancer, a hereditary condition called Lynch syndrome or cancer family syndrome. If a person's mismatch repair system is hindered, the mutation rate increases 100-to-1,000 fold, Simmons said.

Many people with Lynch Syndrome have a mutation in the MutS repair protein pathway and are more susceptible to colon cancer and cancers of the stomach, ovaries and small intestine, among others.

"The particular problem here is that it had remained unclear how MutS finds its rare DNA mismatch target among thousands of correct pairs," said Julie Biteen, assistant professor of chemistry.

In people, mismatches occur only once every 30-to-60 million properly paired bases.

"Previous work, including Nobel Prize-winning work by Paul Modrich, showed how MutS can interact with DNA in a test tube," Biteen said. "Here, we are watching the motions of MutS in a living cell to see how MutS actually does interact with DNA in cells."

The U-M researchers looked at MutS in bacteria, and it's likely that the protein works the same in humans.

"We're adding to the foundation of understanding of how cells avoid mutations," Simmons said. "In addition, our work is pushing us to develop microscopy techniques that could be later used to understand how MutS functions in human cells."

To see the protein, the researchers fused MutS to a fluorescent tag and activated fluorescence with a laser. They then could track individual molecules moving through the living cell, similar to a spotlight following a person around a crowded room, Simmons said.

They found that MutS moved fast to canvas the entire nucleoid, and then slowed significantly when it reached the spot where DNA is replicated. MutS identified and fixed mismatches at this replication site.

"Our work indicates that the population that is moving rapidly isn't searching for mismatches but rather searching for the site of replication," Simmons said. "Once there, it slows down and searches for errors as the DNA is being synthesized."

There are four DNA bases that are arranged in pairs, and each has only one specific pairing partner. The base pairs hold together the two helix strands of DNA, and a mismatch occurs when the wrong partner is paired with the original DNA base. Hereditary information is passed on when these strands of DNA replicate, and mistakes in replication can lead to cancers.

The mismatched pair kinks the DNA at the replication fork where DNA is made, Biteen said. MutS positions itself at that fork so it's ready to catch any mistakes. As an added bonus, this positioning likely tells MutS which side is correct and which side is the new, altered DNA.

###

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Impact of Race, Ethnicity, and Insurance on Survival Rates After Pediatric Cardiac Arrest

September 10, 2025
blank

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

September 10, 2025

Faster Diagnostic Scans Could Revolutionize Prostate Cancer Detection for Millions

September 10, 2025

Gravitational Waves Confirm Hawking and Kerr Black Hole Theories

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Race, Ethnicity, and Insurance on Survival Rates After Pediatric Cardiac Arrest

Most Precise Confirmation of Hawking’s Area Theorem from Clearest Black Hole Collision Signal Yet

Faster Diagnostic Scans Could Revolutionize Prostate Cancer Detection for Millions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.