• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sea urchin spines could fix bones

Bioengineer by Bioengineer
March 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credit: American Chemical Society

More than 2 million procedures every year take place around the world to heal bone fractures and defects from trauma or disease, making bone the second most commonly transplanted tissue after blood. To help improve the outcomes of these surgeries, scientists have developed a new grafting material from sea urchin spines. They report their degradable bone scaffold, which they tested in animals, in the journal ACS Applied Materials & Interfaces.

Physicians have various approaches at hand to treat bone defects: Replacement material can come from a patient's own body, donated tissue, or a synthetic or naturally derived product. All of these methods, however, have limitations. For example, current bioceramics, such as hydroxyapatite, that have been used as scaffolds for bone repair tend to be weak and brittle, which can lead to pieces breaking off. These pieces can then move into adjacent soft tissue, causing inflammation. Recent studies have shown that biological materials, such as sea urchin spines, have promise as bone scaffolds because of their porosity and strength. Xing Zhang, Zheng Guo, Yue Zhu and colleagues wanted to test this idea in more detail.

Using a hydrothermal reaction, the researchers converted sea urchin spines to biodegradable magnesium-substituted tricalcium phosphate scaffolds while maintaining the spines' original interconnected, porous structure. Unlike hydroxyapatite, the scaffolds made from sea urchin spines could be cut and drilled to a specified shape and size. Testing on rabbits and beagles showed that bone cells and nutrients could flow through the pores and promote bone formation. Also, the scaffold degraded easily as it was replaced by the new growth. The researchers say their findings could inspire the design of new lightweight materials for repairing bones.

###

The authors acknowledge funding from the National Natural Science Foundation of China, the Hundred-Talent Program from the Chinese Academy of Sciences, the National High-tech R&D Program from the Ministry of Science and Technology of China.

The abstract that accompanies this study is available here.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Discover Mutactimycins H-J: Antimycobacterial Treasures Uncovered!

October 13, 2025

New Lung-on-a-Chip Model Simulates Severe Influenza

October 13, 2025

20% Fertilizer Cut Inadequate for EU Green Deal

October 13, 2025

New Insights into GLUL-Related Epileptic Encephalopathy

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discover Mutactimycins H-J: Antimycobacterial Treasures Uncovered!

New Lung-on-a-Chip Model Simulates Severe Influenza

20% Fertilizer Cut Inadequate for EU Green Deal

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.