• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scripps Research discovery illuminates how brain cells die in prion diseases

Bioengineer by Bioengineer
December 22, 2021
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA—Prion diseases, such as Creutzfeldt-Jakob Disease (CJD), are fast-moving, fatal dementia syndromes associated with the formation of aggregates of the prion protein, PrP. How these aggregates form within and kill brain cells has never been fully understood, but a new study from scientists at Scripps Research suggests that the aggregates kill neurons by damaging their axons, the narrow nerve fibers through which they send signals to other neurons.

Scripps Research discovery illuminates how brain cells die in prion diseases

Credit: Adriaan Verhelle and Yin Wu (Scripps Research)

LA JOLLA, CA—Prion diseases, such as Creutzfeldt-Jakob Disease (CJD), are fast-moving, fatal dementia syndromes associated with the formation of aggregates of the prion protein, PrP. How these aggregates form within and kill brain cells has never been fully understood, but a new study from scientists at Scripps Research suggests that the aggregates kill neurons by damaging their axons, the narrow nerve fibers through which they send signals to other neurons.

The accumulation of protein aggregates in axons, along with axonal swellings and other signs of dysfunction, are also early features of other neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases. The discovery of how these prion aggregates form in axons and how to inhibit them, reported in Science Advances, may ultimately have a significance that goes far beyond prion diseases.

“We’re hopeful that these findings will lead to a better understanding of prion and other neurodegenerative diseases, as well as new strategies for treating them,” says study senior author Sandra Encalada, PhD, Arlene and Arnold Goldstein Associate Professor in the Department of Molecular Medicine at Scripps Research.

The researchers in their study closely observed mutant, disease-causing copies of the prion-disease protein PrP forming large aggregates in the axons of neurons, but not in the neurons’ main cell bodies. The formation of these aggregates was followed by signs of axon dysfunction and ultimately neuronal death. The scientists found evidence that neurons’ waste-disposal processes normally are able to cope with such aggregates when they are within or close to neurons’ main cell bodies, but are much less able to do so when the aggregates accumulate far out within axons.

The researchers also identified a complex of key proteins as being responsible for steering PrP into axons and causing aggregation associated with large axonal swellings. They demonstrated that by silencing any one of these proteins they could inhibit the aggregates from forming and protect the neurons from damage and death.

Vulnerable axons

CJD is the most common human prion disease, occurring at the rate of about one case per million people per year worldwide. Most cases are thought to arise spontaneously when PrP somehow is altered in the brain and starts aggregating. Because these aggregates grow by a chain-reaction process that draws in healthy copies of PrP, they can transmit CJD in rare cases —for example, during corneal transplant surgery—from one person to another. About 15 percent of cases are hereditary, caused by mutations that make PrP more likely to aggregate. Prion disorders occur in other mammals and are thought to be due to similar toxic aggregations of different species’ PrP proteins.

In the study, Encalada’s team used mouse brain cells containing mutant PrP, along with microscopic motion-picture techniques, to study the initial accumulation of PrP aggregates in axons. A neuron’s axon is often very long in relation to its main body—the soma—and has been found to be uniquely vulnerable to disruptions of its delicate systems for transporting essential molecules and getting rid of waste.

PrP’s ordinary function in neurons has never been clear, but the protein appears to be normally secreted, via sac-like containers called vesicles, from the soma and the axon, where it sometimes returns to be recycled or degraded as waste. The researchers found in their experiments that mutant PrP produced in the soma is also largely encapsulated in vesicles that get moved into the axon along railways called microtubules.

This movement involves a somewhat complex vesicle trafficking system, and the researchers observed that this system shunts much of the PrP far out into axons, where PrP-containing vesicles gather and merge. Mutant PrP in this situation forms large aggregates—Encalada calls them endoggresomes—that axons can’t get rid of. The aggregates lead to axonal swellings, and other signs of dysfunction including reduced neuronal calcium signaling, and ultimately a much faster neuronal death rate compared to neurons with normal PrP.

The researchers also found a way of countering endoggresomes formation. They identified four proteins, Arl8, kinesin-1, Vps41, and SKIP, that are responsible for directing PrP-containing vesicles into axons, carrying them far out into the soma, and merging them with other PrP-containing vesicles to trigger aggregate formation. When they silenced any of these proteins, far fewer PrP-containing vesicles entered axons, the axons showed few or no signs of aggregation, and the neurons functioned normally or almost normally and survived just as well as normal brain cells.

The results point to the tantalizing possibility that prion diseases, and perhaps many other protein-aggregate diseases of the brain, can be prevented or treated by interrupting at least transiently the trafficking process that brings vesicle-encapsulated, aggregate-prone proteins out into axons.

“We’re very enthusiastic about discovering molecules that can inhibit this aggregate-forming pathway and studying the effects of such inhibitors in animal models of prion and other neurodegenerative diseases,” Encalada says.

“Endosomal Sorting Drives the Formation of Axonal Prion Protein Endoggresomes” was co-authored by Romain Chassefeyre, Tai Chaiamarit, Adriaan Verhelle, André Leitão and Sandra Encalada, all of Scripps Research; and Sammy Weiser Novak, Leonardo Andrade and Uri Manor, of the Salk Institute for Biological Studies.

The research was funded by the National Institutes of Health (R01AG049483) and others.

About Scripps Research

Scripps Research is an independent, nonprofit biomedical institute ranked the most influential in the world for its impact on innovation by Nature Index. We are advancing human health through profound discoveries that address pressing medical concerns around the globe. Our drug discovery and development division, Calibr, works hand-in-hand with scientists across disciplines to bring new medicines to patients as quickly and efficiently as possible, while teams at Scripps Research Translational Institute harness genomics, digital medicine and cutting-edge informatics to understand individual health and render more effective healthcare. Scripps Research also trains the next generation of leading scientists at our Skaggs Graduate School, consistently named among the top 10 US programs for chemistry and biological sciences. Learn more at www.scripps.edu.



Journal

Science Advances

DOI

10.1126/sciadv.abg3693

Article Title

Endosomal sorting drives the formation of axonal prion protein endoggresomes

Article Publication Date

22-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Environment on Hornbill Behavior in Zoos

August 30, 2025

circ_0020850: Key Indicator for Stroke Recovery

August 30, 2025

Examining DnaJ Gene Family’s Response to Salt Stress

August 30, 2025

New Single-Cell Atlas Unveils Starlet Anemone Secrets

August 30, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gastrectomy Methods Compared After Chemotherapy

Kawasaki Disease with Cough: Case Report Insights

Biomimetic Soft Actuators Mimic Human Defecation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.