• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists use magnetic fields to remotely stimulate brain — and control body movements

Bioengineer by Bioengineer
August 16, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credit: Munshi et al, eLife

BUFFALO, N.Y. — Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities — an achievement that could lead to advances in studying and treating neurological disease.

The technique researchers developed is called magneto-thermal stimulation. It gives neuroscientists a powerful new tool: a remote, minimally invasive way to trigger activity deep inside the brain, turning specific cells on and off to study how these changes affect physiology.

"There is a lot of work being done now to map the neuronal circuits that control behavior and emotions," says lead researcher Arnd Pralle, PhD, a professor of physics in the University at Buffalo College of Arts and Sciences. "How is the computer of our mind working? The technique we have developed could aid this effort greatly."

Understanding how the brain works — how different parts of the organ communicate with one another and control behavior — is key to developing therapies for diseases that involve the injury or malfunction of specific sets of neurons. Traumatic brain injuries, Parkinson's disease, dystonia and peripheral paralysis all fall into this category.

The advances reported by Pralle's team could also aid scientists seeking to treat ailments such as depression and epilepsy directly through brain stimulation.

The study, which was done on mice, was published Aug. 15 in eLife, an open-access, peer-review journal. Pralle's team included first authors Rahul Munshi, a UB PhD candidate in physics, and Shahnaz Qadri, PhD, a UB postdoctoral researcher, along with researchers from UB, Philipps University of Marburg in Germany and the Universidad de Santiago de Compostela in Spain.

Magneto-thermal stimulation involves using magnetic nanoparticles to stimulate neurons outfitted with temperature-sensitive ion channels. The brain cells fire when the nanoparticles are heated by an external magnetic field, causing the channels to open.

Targeting highly specific brain regions

In mice, Pralle's team succeeded in activating three distinct regions of the brain to induce specific motor functions.

Stimulating cells in the motor cortex caused the animals to run, while stimulating cells in the striatum caused the animals to turn around. When the scientists activated a deeper region of the brain, the mice froze, unable to move their extremities.

"Using our method, we can target a very small group of cells, an area about 100 micrometers across, which is about the width of a human hair," Pralle says.

How magneto-thermal stimulation works

Magneto-thermal stimulation enables researchers to use heated, magnetic nanoparticles to activate individual neurons inside the brain.

Here's how it works: First, scientists use genetic engineering to introduce a special strand of DNA into targeted neurons, causing these cells to produce a heat-activated ion channel. Then, researchers inject specially crafted magnetic nanoparticles into the same area of the brain. These nanoparticles latch onto the surface of the targeted neurons, forming a thin covering like the skin of an onion.

When an alternating magnetic field is applied to the brain, it causes the nanoparticles' magnetization to flip rapidly, generating heat that warms the targeted cells. This forces the temperature-sensitive ion channels to open, spurring the neurons to fire.

The particles the researchers used in the new eLife study consisted of a cobalt-ferrite core surrounded by a manganese-ferrite shell.

An advance over other methods, like optogenetics

Pralle has been working to advance magneto-thermal stimulation for about a decade. He previously demonstrated the technique's utility in activating neurons in a petri dish, and then in controlling the behavior of C. elegans, a tiny nematode.

Pralle says magneto-thermal stimulation has some benefits over other methods of deep-brain stimulation.

One of the best-known techniques, optogenetics, uses light instead of magnetism and heat to activate cells. But optogenetics typically requires implantation of tiny fiber optic cables in the brain, whereas magneto-thermal stimulation is done remotely, which is less invasive, Pralle says. He adds that even after the brains of mice were stimulated several times, targeted neurons showed no signs of damage.

The next step in the research is to use magneto-thermal stimulation to activate — and silence — multiple regions of the brain at the same time in mice. Pralle is working on this project with Massachusetts Institute of Technology researcher Polina Anikeeva, PhD, and Harvard Medical School. The team has $3.5 million in funding from the National Institutes of Health to conduct continuing studies.

###

The research published in eLife was funded by the National Institute of Mental Health and the Human Frontier Science Program.

Media Contact

Charlotte Hsu
[email protected]
716-645-4655
@UBNewsSource

http://www.buffalo.edu

Original Source

https://ubcms-author.buffalo.edu/cf#/content/shared/university/news/news-center-releases/2017/08/019.html http://dx.doi.org/10.7554/eLife.27069

Share12Tweet8Share2ShareShareShare2

Related Posts

Genomic Study Uncovers Resilience of Coral-Killing Sponge

Genomic Study Uncovers Resilience of Coral-Killing Sponge

September 29, 2025

Effective Treatment of Verrucous Granuloma in Captive Elephants

September 29, 2025

Orogeny Fuels Spider Family Diversification in Asia

September 28, 2025

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Placental SERT Gene Linked to Maternal Obesity, Newborn Size

Boosting Second Harmonic Generation in WS2/MoS2 Nanoantennas

Evaluating Caregiver Influences on Youth Eating Disorders

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.