• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists use machine learning to predict diversity of tree species in forests

by
July 16, 2024
in Biology
Reading Time: 3 mins read
0
Scientists use machine learning to predict diversity of tree species in forests
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A collaborative team of researchers led by Ben Weinstein of the University of Florida, Oregon, US, used machine learning to generate highly detailed maps of over 100 million individual trees from 24 sites across the U.S., publishing their findings July 16th in the open-access journal PLOS Biology. These maps provide information about individual tree species and conditions, which can greatly aid conservation efforts and other ecological projects. 

Scientists use machine learning to predict diversity of tree species in forests

Credit: Weinstein BG, et al., 2024, PLOS Biology, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

A collaborative team of researchers led by Ben Weinstein of the University of Florida, Oregon, US, used machine learning to generate highly detailed maps of over 100 million individual trees from 24 sites across the U.S., publishing their findings July 16th in the open-access journal PLOS Biology. These maps provide information about individual tree species and conditions, which can greatly aid conservation efforts and other ecological projects. 

Ecologists have long collected data on tree species to better understand a forest’s unique ecosystem. Historically, this has been done by surveying small plots of land and extrapolating those findings, though this cannot account for the variability across the whole forest. Other methods can cover broader areas, but often struggle to categorize individual trees.

To generate large and highly detailed forest maps, the researchers trained a type of machine learning algorithm called a deep neural network using images of the tree canopy and other sensor data taken by plane. These training data covered 40,000 individual trees and, like all the data used in this study, were provided by the National Ecological Observatory Network.

The deep neural network was able to classify most common tree species with 75 to 85 percent accuracy. Additionally, the algorithm could also provide other important analyses, such as reporting which trees are alive or dead.

The researchers found that the deep neural network had the highest accuracy in areas with more open space in the tree canopy and performed best when categorizing conifer tree species, such as pines, cedars, and redwoods. The network also performed best in areas with lower species diversity. Understanding the strengths of the algorithm can be useful for applying these methods in a variety of forest ecosystems.

The researchers also uploaded their models’ predictions to Google Earth Engine so that their findings can aid other ecological research. The researchers add, “The diversity of overlapping datasets will foster richer areas of understanding for forest ecology and ecosystem functioning.”

The authors add, “Our aim is to provide researchers with the first broad scale maps of tree species diversity from ecosystems across the United States. These canopy tree maps can be updated with new data collected at each site. By collaborating with researchers across NEON sites we can build better and better predictions over time.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002700

Citation: Weinstein BG, Marconi S, Zare A, Bohlman SA, Singh A, Graves SJ, et al. (2024) Individual canopy tree species maps for the National Ecological Observatory Network. PLoS Biol 22(7): e3002700. https://doi.org/10.1371/journal.pbio.3002700

Author Countries: United States

Funding: see manuscript



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002700

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.