• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists uncover mechanism allowing bacteria to survive the human immune system

Bioengineer by Bioengineer
April 20, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have uncovered molecular details of how pathogenic bacteria fight back against the human immune response to infection.

Scientists at the University of East Anglia (UEA) and Institut de Biologie Structurale (CEA-CNRS-UGA, France) have identified the structure of NsrR, a bacterial protein that binds to DNA and plays a key role in the bacterium's resistance to nitric oxide (NO), which is produced in the initial immune response to infection.

In order to counter the effects of NO, which can be toxic to living organisms, many bacteria have evolved ways to detect it and mount a cellular response.

The most common, dedicated NO sensor in bacteria is the regulatory protein NsrR. Regulatory proteins bind to DNA, and in doing so control whether particular genes are switched on or off.

NsrR contains a specialised type of co-factor – an additional component of a protein needed for its activity – called an iron-sulfur cluster. These are very fragile and reactive, which makes them hard to work with, but recent work in the Schools of Chemistry and Biology at UEA have provided important new information on how NsrR functions as a sensor of NO.

The team has now identified structures of the protein in its two principal forms — cluster-free and cluster-bound – revealing key differences that demonstrate how NsrR responds to NO.

These structural changes show how NsrR switches between DNA-binding and non-binding forms, enabling it to regulate the switching on or off of the production of enzymes which combat NO.

Prof Nick Le Brun, who led the work at UEA, said: "NsrR belongs to an important but poorly understood family of regulators, members of which are involved in a wide range of essential cellular functions in bacteria.

"Many of these regulators have been shown or are predicted to contain an iron-sulfur cluster, but our work provides the first example of a structure with the fragile cluster bound. It reveals the general mechanism by which these regulators respond to different signals.

"Furthermore, the structure reveals that the cluster is coordinated to the protein in a way that has not been observed before in biology.

"The process of how pathogens survive human immune responses is complex, and every step we take towards understanding it, the greater the possibility of developing intervention strategies that disable the response."

'Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding', is published in the journal Nature Communications.

###

Media Contact

Press Office
[email protected]
44-016-035-93496
@uniofeastanglia

http://comm.uea.ac.uk/press

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revolutionary Coupling Model Enhances Lithium-Ion Battery Performance

September 9, 2025
Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

September 9, 2025

Addressing Therapeutic Inertia in U.S. Diabetes Care

September 9, 2025

Distinguishing Thyroid Nodules: Risk Factors and Ultrasound Insights

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Coupling Model Enhances Lithium-Ion Battery Performance

Allicin-Silver Nanoparticle Hydrogel: A Breakthrough in Wound Healing

Addressing Therapeutic Inertia in U.S. Diabetes Care

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.