• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists uncover mechanism allowing bacteria to survive the human immune system

Bioengineer by Bioengineer
April 20, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have uncovered molecular details of how pathogenic bacteria fight back against the human immune response to infection.

Scientists at the University of East Anglia (UEA) and Institut de Biologie Structurale (CEA-CNRS-UGA, France) have identified the structure of NsrR, a bacterial protein that binds to DNA and plays a key role in the bacterium's resistance to nitric oxide (NO), which is produced in the initial immune response to infection.

In order to counter the effects of NO, which can be toxic to living organisms, many bacteria have evolved ways to detect it and mount a cellular response.

The most common, dedicated NO sensor in bacteria is the regulatory protein NsrR. Regulatory proteins bind to DNA, and in doing so control whether particular genes are switched on or off.

NsrR contains a specialised type of co-factor – an additional component of a protein needed for its activity – called an iron-sulfur cluster. These are very fragile and reactive, which makes them hard to work with, but recent work in the Schools of Chemistry and Biology at UEA have provided important new information on how NsrR functions as a sensor of NO.

The team has now identified structures of the protein in its two principal forms — cluster-free and cluster-bound – revealing key differences that demonstrate how NsrR responds to NO.

These structural changes show how NsrR switches between DNA-binding and non-binding forms, enabling it to regulate the switching on or off of the production of enzymes which combat NO.

Prof Nick Le Brun, who led the work at UEA, said: "NsrR belongs to an important but poorly understood family of regulators, members of which are involved in a wide range of essential cellular functions in bacteria.

"Many of these regulators have been shown or are predicted to contain an iron-sulfur cluster, but our work provides the first example of a structure with the fragile cluster bound. It reveals the general mechanism by which these regulators respond to different signals.

"Furthermore, the structure reveals that the cluster is coordinated to the protein in a way that has not been observed before in biology.

"The process of how pathogens survive human immune responses is complex, and every step we take towards understanding it, the greater the possibility of developing intervention strategies that disable the response."

'Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding', is published in the journal Nature Communications.

###

Media Contact

Press Office
[email protected]
44-016-035-93496
@uniofeastanglia

http://comm.uea.ac.uk/press

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

November 1, 2025

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

November 1, 2025

Boosting Lettuce Yields with Steel Slag Compost Teas

November 1, 2025

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental Stress in Neurodevelopmental Disorders: Key Factors Revealed

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.