• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists uncover genetic evidence that ‘we are what we eat’

Bioengineer by Bioengineer
November 15, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Oxford have demonstrated that the diets of organisms can affect the DNA sequences of their genes.

In a study on two groups of parasites, the team detected differences in DNA sequences that could be attributed to the composition of their food.

The results are published in the journal Genome Biology.

Study co-author Dr Steven Kelly, from Oxford's Department of Plant Sciences, said: 'Organisms construct their DNA using building blocks they get from food. Our hypothesis was that the composition of this food could alter an organism's DNA. For example, could a vegetarian panda have predictable genetic differences from a meat-eating polar bear?

'To test this hypothesis, we picked simple groups of parasites to use as a model system. These parasites share a common ancestor but have evolved to infect different hosts and eat very different foods.

'We found that different levels of nitrogen in a parasite's diet contributed to changes in its DNA. Specifically, parasites with low-nitrogen, high-sugar diets had DNA sequences that used less nitrogen than parasites with nitrogen-rich, high-protein diets.'

The study involved groups of eukaryotic parasites (Kinetoplastida) and bacterial parasites (Mollicutes) that infect different plant or animal hosts.

The results, based on novel mathematical models developed by the researchers, reveal a previously hidden relationship between cellular metabolism and evolution. They provide new insights into how DNA sequences can be influenced by adaptation to different diets.

Furthermore, the team found it is possible to predict the diets of related organisms by analysing the DNA sequence of their genes.

Study co-author Emily Seward, a doctoral candidate in Oxford's Department of Plant Sciences, said: 'It has been unclear why very closely related organisms can look so different in their genetic makeup. By bringing together two fundamental aspects of biology – metabolism and genetics – we have advanced our understanding of this area.

'It's a difficult question to answer, because there are so many factors that can influence the DNA sequence of an organism. But our study explains a very high percentage of these differences and provides evidence that we really are what we eat.

'We are now looking at more complex organisms to see if we will find the same thing.'

###

Media Contact

Stuart Gillespie
[email protected]
44-018-652-83877
@UniofOxford

http://www.ox.ac.uk/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Uncovering Promising Biomarkers for Interstitial Cystitis Insights

November 16, 2025

Exploring Histone Lysine L-Lactylation: Biochemistry Unveiled

November 16, 2025

Gene Therapy Revives Hearing in Aging Mice

November 16, 2025

Advancements in Semiconductor Research at Seoul National University

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Promising Biomarkers for Interstitial Cystitis Insights

Exploring Histone Lysine L-Lactylation: Biochemistry Unveiled

Gene Therapy Revives Hearing in Aging Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.