• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists uncover details of viral infections that drive environmental, human health

Bioengineer by Bioengineer
April 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBUS, Ohio – Below the surface of systems as large and ancient as an ocean and as small and new as a human baby are communities of viruses and bacteria that interact to influence everything from worldwide oxygen levels to the likelihood a newborn will fall ill.

Understanding the interplay between those microbes could one day help scientists devise ways to preserve the environment and tackle hard-to-fight diseases.

New research from The Ohio State University offers a glimpse into the complexity of interactions between bacteria and the viruses – or phages — that infect them. The study appears online in The ISME Journal.

These interactions are routine and can be good or bad for the infected bacteria, but until now little was known about how different one of these interactions might be from another, said lead researcher Cristina Howard-Varona, a postdoctoral microbiology researcher at Ohio State.

"We're trying to understand how effective a virus — or phage — is when it infects one bacteria versus another and we've learned that there are important differences," Howard-Varona said.

"In any environment, not all phages are going to infect in the same way, at the same speed and with the same success."

In the study, the research team used advanced equipment in collaboration with the U.S. Department of Energy to piece together in real time the details of the infection inside two genetically similar bacterial "hosts" when they were infected by either the same or different viruses. The Orbitrap mass spectrometer and next-generation gene sequencers allowed them to watch for all the steps in the interaction between the viruses and the bacterial cells, which were quite different in speed and success.

The bacterial strains used in the study are commonly found in the environment and affect nutrient turnover, health and disease.

"The infection efficiency was very, very different when looking at two different phages that infected the same bacterial host. In one case, the phage propagates and kills cells incredibly fast — in about an hour — and in the other case it's much slower, more than 10 times as long," Howard-Varona said.

While it's too early to say where this science might lead, the aim is to eventually understand these interactions in a way that could open the door to improving the environment and human health, she said.

"In some cases, phage infection is good and you could envision intervening to boost infection efficiency to fight all sorts of human pathogens that are no longer sensitive to antibiotics, such as MRSA," Howard-Varona said. "But to do that, we need to understand the basic mechanisms, including those outlined in this study."

The research highlights the importance of moving beyond studies of "ideal" interactions between bacteria and viruses in the lab setting and seeking more knowledge about the true varying interplay between microorganisms in nature, said Matthew Sullivan, an associate professor of microbiology at Ohio State.

"When you look at natural phage and bacteria interactions — such as those in this study – you see that many steps in the phage-host interaction are needed to infect efficiently, and that the infection differs depending on the phage and the bacteria."

Added Howard-Varona, "Historically, in the lab, scientists have used these model systems with the fastest, greatest infection efficiency but that's not always true in nature — in water, or soil or in our bodies — and it's important to understand the differences."

###

Other Ohio State researchers who worked on the study were Katherine Hargreaves and Natalie Solonenko. The Ohio State researchers collaborated with scientists from Pacific Northwest National Laboratory and the Department of Energy's Environmental Molecular Sciences Laboratory.

The study was supported by the Department of Energy and the Gordon and Betty Moore Foundation.

CONTACTS:

Cristina Howard-Varona
[email protected]

Matthew Sullivan
614-247-1616
[email protected]

Media Contact

Cristina Howard-Varona
[email protected]
@osuresearch

http://news.osu.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

November 6, 2025
Speeding Up Transgenic Plant Growth: Harnessing Natural Regeneration to Cut Weeks Down to Days

Speeding Up Transgenic Plant Growth: Harnessing Natural Regeneration to Cut Weeks Down to Days

November 6, 2025

Selective Lipid Deposition in Triploid Rainbow Trout

November 6, 2025

Biohub Unveils Pioneering Large-Scale Initiative Merging Frontier AI and Frontier Biology to Revolutionize Disease Prevention and Cure

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Meditation Retreat Accelerates Reprogramming of Body and Mind, New Study Shows

New Study in Chinese Medical Journal Uncovers How Circulating Tumor Cells Evade the Immune System

Revolutionary Molecular Adjustment Elevates Deep-Blue OLED Efficiency to Record Heights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.