• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists tame biological trigger of deadly Huntington’s disease

Bioengineer by Bioengineer
November 8, 2023
in Health
Reading Time: 3 mins read
0
Huntington's
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Huntington’s disease causes involuntary movements and dementia, has no cure, and is fatal. For the first time, UC Riverside scientists have shown they can slow its progression in flies and worms, opening the door to human treatments.

Huntington's

Credit: Nick Youngson

Huntington’s disease causes involuntary movements and dementia, has no cure, and is fatal. For the first time, UC Riverside scientists have shown they can slow its progression in flies and worms, opening the door to human treatments.

Key to understanding these advancements is the way that genetic information in cells is converted from DNA into RNA, and then into proteins. DNA is composed of chemicals called nucleotides: adenine (A), thymine (T), guanine (G), and cytosine (C). The order of these nucleotides determines what biological instructions are contained in a strand of DNA.

On occasion, some DNA nucleotides repeat themselves, expanding the DNA strand. In Huntington’s disease, this expansion occurs with three nucleotides, cytosine-adenine-guanine, or CAG.

Expansion into an extraordinary number of repeated CAG sequences of DNA is associated with earlier onset and increased severity of Huntington’s disease symptoms. Similar observations were made for a number of other neurodegenerative diseases.

When these DNA repeats are translated into RNA, there is an insidious side effect. The cell chemically modifies the extra RNA buildup. Wang and his collaborators learned that the modified RNA plays a crucial role in neurodegeneration.

“We are first to discover that a type of chemical modification, called methylation, occurs more frequently with extra repeats in RNA. Then we see abnormal distribution and buildup of a particular protein in cells,” said Yinsheng Wang, distinguished UCR professor of chemistry. “In other words, methylation converts an important cellular protein into waste.”

These findings parallel observations made for the same protein in brain tissues of Huntington’s disease, ALS and frontotemporal dementia patients. Longer RNA repeats mean a higher modification rate, which generates more protein waste and exacerbates disease.

“Even healthy people have up to 34 CAG repeats on a particular gene, the HTT gene,” Wang said. “However, due to environmental or genetic causes, there might be as many as 100 CAG repeats in the cells of people with Huntington’s disease.”

Long, repetitive RNA sequences can turn into an excess of protein in cells, creating “cellular trash,” which has toxic effects.  

A new Nature journal article details how RNA methylation on CAG repeats is implicated in the complex mechanism underlying Huntington’s disease. The article also explains how the researchers greatly reduced the progression of disease in worms and fruit flies and extended the lifespan of flies by introducing a protein into cells that removes methylation.

At present there is no way to cure or even slow the progression of Huntington disease. Health care providers typically offer medications to help with some symptoms. While this breakthrough is not a cure, it represents the possibility of an effective therapy where none currently exists. 

The research team, which includes professors Weifeng Gu at UCR, X. William Yang at UCLA and Nancy M. Bonini at the University of Pennsylvania, is now searching for small molecules that can inhibit methylation and form the basis of a Huntington’s therapy. 

Because RNA repeats are present in similar diseases, like ALS and certain types of spinocerebellar ataxia, the door is open to treatments for these other fatal, degenerative diseases. 

“We don’t think the mechanisms we studied are the only ones that contribute to Huntington’s,” Wang said. “However, we have shown that by targeting them we can reduce the disease in model organisms, which could lead to longer, better lives for those who suffer from this and potentially other diseases as well.”



Journal

Nature

DOI

10.1038/s41586-023-06701-5

Article Title

m1 A in CAG repeat RNA binds to TDP-43 and induces neurodegeneration

Article Publication Date

8-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Supporting Caregivers of COPD Patients: Key Insights

October 5, 2025

Evaluating Mid-Upper Arm Circumference for Child Thinness

October 5, 2025

GDI-PMNet Enables Joint Prediction of Glioma Markers

October 5, 2025

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

October 5, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Supporting Caregivers of COPD Patients: Key Insights

Exploring Plastid Genome Traits in Saururaceae

Evaluating Mid-Upper Arm Circumference for Child Thinness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.