• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Scientists sniff out female mouse scents that make males frisky

Bioengineer.org by Bioengineer.org
January 26, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Scientists have identified two chemical scents in the urine of female mice that arouse sexual behavior in males, a discovery that shines a spotlight on how mouse pheromones control behavior.

The research, at Washington University School of Medicine in St. Louis, is available online in the journal Cell.

"Science has long recognized that urine, sweat and other bodily fluids contain chemical communication signals called pheromones that can influence the biology or behavior of others," said senior author Timothy E. Holy, PhD, associate professor of neurobiology and anatomy. "Most mammals use the information in these signals for social purposes, such as establishing territory or dominance, or in courtship and mating. In many cases, though, the specific chemical identities of the signals are unknown."

The new study, led by staff scientist Xiaoyan Fu, PhD, took advantage of the neurons in the noses of male mice to start narrowing down the compounds of interest. Using a new technique the researchers developed to identify pheromones in complex mixtures, the researchers narrowed down a list of 1,600 potentially relevant chemicals in male and female mouse urine to a list of just 23. Among those 23 chemicals might be signals that convey information about sex, age, dominance and other factors.

The researchers then focused on neurons that fired in response to all samples of female urine but no samples of male urine, hoping that these neurons would lead them to female sex pheromones. Only two of the 23 chemicals fit the pattern. Through collaboration with Michael L. Gross, PhD, professor of chemistry, the scientists discovered that both chemicals are waste products of steroid metabolism.

"Mice make hormones and steroids that regulate aspects of their physiology," Holy said. "At some point, those hormones have to be cleared out and converted into waste products. So when an animal's nose detects the waste products from another animal, it's a bit like spying on the neighbors by going through their garbage. These chemicals send signals about what's going on internally in another animal."

The firing patterns of the male olfactory neurons in different strains of mice when exposed to various female urine samples implicated the two specific chemicals, providing the first evidence that they have a role in social communication by activating neurons in the nose.

"Male mice will spend a lot of time investigating female urine," Holy said. "But they show very little interest in male urine — one sniff and they move on — and similarly little interest in the urine of female mice after their ovaries have been removed. So presumably there is some cue in normal female urine that attracts male interest."

But beyond simply measuring the activity of neurons, the researchers analyzed male mouse behavior when exposed to the two chemicals.

"These two compounds alone are very good at mimicking the increased interest that males show to female mouse urine," Holy said. "If you take one or both of these compounds and add them to male mouse urine — a stimulus male mice normally spend little time with — all of a sudden they become much more interested. It doesn't explain the whole effect of female urine on male mice, but it explains a large fraction of the response. We think there's still some component of the response to female urine that we're not mimicking yet."

Similarly, applying these chemicals to the bodies of female mice without ovaries substantially increased the number of times males attempted to mate with them. And conversely, the researchers showed that removing these two chemicals from female mouse urine substantially reduced male mating behavior.

Holy said this study is an important piece of the puzzle in understanding the neurobiology of mammals.

"One of the nice things about this pheromone system is that it's a relatively simple and compact neural circuit in a complicated animal," he said. "It doesn't occupy a large percentage of the mouse's brain and yet it does interesting things like sex recognition, decision making and learning. It's great that we now have a new set of tools to manipulate neurons and see how they respond and what the downstream consequences are."

###

This work was supported by the National Institutes of Health (NIH), grant numbers R01 DC005964, R01 NS068409, R01 DC010381 and P41 GM103422-36.

Fu X, Yan Y, Xu PS, Geerlof-Vidavsky I, Chong W, Gross ML, Holy TE. A molecular code for identity in the vomeronasal system. Cell. Online Oct. 1, 2015.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Share14Tweet7Share2ShareShareShare1

Related Posts

Parental KMO Genotype Influences Offspring Behavior Differently by Sex

September 7, 2025

Systemic Immune-Inflammation Index Predicts Heart Failure Risks

September 7, 2025

5-T MRI Reveals Brain’s Perivascular Spaces

September 7, 2025

Honey Bee Gene Expression Altered by Electric Fields

September 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parental KMO Genotype Influences Offspring Behavior Differently by Sex

Systemic Immune-Inflammation Index Predicts Heart Failure Risks

5-T MRI Reveals Brain’s Perivascular Spaces

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.