• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists show molecular basis for ants acting as ‘bodyguards’ for plants

Bioengineer by Bioengineer
September 18, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: G. A. Miller

TORONTO, ON – Though you might not think of ants as formidable bodyguards, some do an impressive job protecting plants from enemies. Now, scientists at the University of Toronto (U of T) have determined what makes some better bodyguards than others.

Examing the relationship between the Amazon rainforest plant Cordia nodosa in Peru and the Amazonian ant Allomerus octoarticulatus, they found the degree to which the ants express two genes significantly impacts the amount of protection they provide to their hosts.

The ant-plant relationship is an example of a phenomenon in nature known as mutualism, in which two seemingly disparate species interact in a manner that is mutually beneficial for both. Two common examples of mutualisms are pollination and seed dispersal, both of which involve plants attracting animals that perform an important service by offering them a food reward. The features of mutualisms, however, vary across animals and species.

"Around 400 species of tropical plants have evolved specialized structures called domatia to house ant colonies that defend them, mainly against herbivorous insects," said Megan Frederickson, associate professor in the Department of Ecology & Evolutionary Biology at U of T and senior author of a new study published in Proceedings of the Royal Society B. "Because there are many, many arboreal ants in rainforests, tropical trees are often completely covered in ants."

Frederickson suggests that these domatia that give ants a home probably evolved because they attract the ants that keep herbivores off plants.

"The plant we studied is attacked by grasshoppers, beetles, and caterpillars, and although these insects are small, they can do a lot of damage to trees," she said. "And since ants eat a lot of insects and other arthropods, they reduce the density of such herbivores on the trees."

The researchers zeroed in on two genes of Allomerus octoarticulatus that regulate foraging behaviour, knowing that how an animal forages for food often determines how much benefit its plant partner receives. Working in the field in the Peruvian Amazon, they fed some colonies a chemical that increases the activity of the genes' products, and observed how it changed ant behavior. They then collected the ants and brought them back to Toronto for molecular analysis.

"We found that when we activated the products of these two ant genes, more workers were recruited to attack herbivores, resulting in less damage to the trees," Frederickson said. "Gene expression in ant workers was also correlated with whether an ant colony discovered a grasshopper and how much damage was inflicted on leaves."

The results suggest a molecular basis for ant protection of plants in this mutualism. Previously, little was known about the genes or molecular mechanisms that make some ants better bodyguards than others. Frederickson and her colleagues suggest this research could someday help us understand what makes some animals better pollinators or seed dispersers too, although they caution that genetically engineering animals for these ecosystem services could have unintended consequences.

The findings are reported in the paper "An ant-plant mutualism through the lens of cGMP-dependent kinase genes" in the September 13 issue of Proceedings of the Royal Society B. The research is supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institute for Advanced Research (CIFAR).

###

MEDIA CONTACTS:

Megan Frederickson
Department of Ecology and Evolutionary Biology
University of Toronto
+1 416 978 7252
[email protected]

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
+1 416 946 7950
[email protected]

Media Contact

Sean Bettam
[email protected]
416-946-7950
@UofTNews

http://www.utoronto.ca

Related Journal Article

http://dx.doi.org/10.1098/rspb.2017.0896

Share14Tweet7Share2ShareShareShare1

Related Posts

Dynamic Fusion Model Enhances scRNA-seq Clustering

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025
Scientists Unveil First Complete Structure of Botulinum Neurotoxin Complex

Scientists Unveil First Complete Structure of Botulinum Neurotoxin Complex

August 27, 2025

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

August 27, 2025

Innovative Nonsurgical Approach Offers New Hope for Treating Pelvic Organ Prolapse

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing the Hidden World: A Stunning First Look at the Viruses Within Us

Enhancing Clinical Governance in Hospital Pharmacy Services

Nature-Inspired Solutions for Artificial Vision Integration

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.