• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists reveal role for lysosome transport in Alzheimer’s disease progression

Bioengineer by Bioengineer
August 7, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Gowrishankar et al., 2017

Researchers from Yale University School of Medicine have discovered that defects in the transport of lysosomes within neurons promote the buildup of protein aggregates in the brains of mice with Alzheimer's disease. The study, which will be published August 7 in The Journal of Cell Biology (JCB), suggests that developing ways to restore lysosome transport could represent a new therapeutic approach to treating the neurodegenerative disorder.

Alzheimer's disease is the sixth leading cause of death in the United States, with over 5 million Americans currently estimated to be living with the disorder. A characteristic feature of the disease is the formation of amyloid plaques inside the brain. The plaques consist of extracellular aggregates of a toxic protein fragment called β-amyloid surrounded by numerous swollen axons, the parts of neurons that conduct electric impulses to other nerve cells.

These axonal swellings are packed with lysosomes, cellular garbage disposal units that degrade old or damaged components of the cell. In neurons, lysosomes are thought to "mature" as they are transported from the ends of axons to the neuronal cell body, gradually acquiring the ability to degrade their cargo. The lysosomes that get stuck and accumulate inside the axonal swellings associated with amyloid plaques fail to properly mature, but how these lysosomes contribute to the development of Alzheimer's disease is unclear. One possibility is that they promote the buildup of β-amyloid because some of the enzymes that generate β-amyloid by cleaving a protein called amyloid precursor protein (APP) accumulate in the swellings with the immature lysosomes.

Shawn Ferguson and colleagues at Yale University School of Medicine investigated this possibility by impeding the transport of lysosomes in mouse neurons. The researchers found that neurons lacking a protein called JIP3 failed to transport lysosomes from axons to the cell body, leading to the accumulation of lysosomes in axonal swellings similar to those seen in Alzheimer's disease patients. The swellings also accumulated APP and two enzymes–called BACE1 and presenilin 2–that cleave it to generate β-amyloid. Neurons lacking JIP3 therefore generated increased amounts of β-amyloid.

The researchers then removed one copy of the gene encoding JIP3–halving the amount of JIP3 protein–from mice that were already prone to developing Alzheimer's disease. These animals produced more β-amyloid and formed larger amyloid plaques, surrounded by an increased number of swollen axons.

"Collectively, our results indicate that the axonal accumulations of lysosomes at amyloid plaques are not innocent bystanders but rather are important contributors to APP processing and amyloid plaque growth," Ferguson says.

Genetic and environmental factors that impede lysosomal transport may therefore contribute to the progression of Alzheimer's disease. For example, traumatic brain injuries, which are thought to be significant risk factors for Alzheimer's disease, are known to disrupt transport along axons and induce axonal swelling.

"The identification of other proteins that function alongside JIP3 in regulating the axonal transport and maturation of lysosomes could ultimately lead to strategies to modulate the axonal abundance of lysosomes for therapeutic purposes," Ferguson says.

###

Gowrishankar et al., 2017. J. Cell Biol. http://jcb.rupress.org/cgi/doi/10.1083/jcb.201612148?PR.

About The Journal of Cell Biology

The Journal of Cell Biology (JCB) features peer-reviewed research on all aspects of cellular structure and function. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JCB provides free online access to many article types from the date of publication and to all archival content. Established in 1955, JCB is published by The Rockefeller University Press. For more information, visit jcb.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JCB on Twitter at @JCellBiol and @RockUPress.

Media Contact

Rory Williams
[email protected]
212-327-8603
@RockUPress

http://www.rupress.org/

Related Journal Article

http://dx.doi.org/10.1083/jcb.201612148

Share12Tweet7Share2ShareShareShare1

Related Posts

Scolopsis ghanam captured by Rebekka Pentti for NYU Abu Dhabi Credit Rebekka Pentti for NYU Abu Dhabi

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025
Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025

SLC6A15 Linked to Keloids: Insights from Bioinformatics

August 26, 2025

Why the Pygmy Seahorse Sports a Snub Nose: Unveiling Nature’s Tiny Marvel

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Monthly Pill Emerges as Promising Candidate for HIV Pre-Exposure Prophylaxis

Supporting Personhood in Family Members with Dementia: A Focus for World Alzheimer’s Month

Cochleates: Promise and Perils in Drug Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.