• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists reveal how gut microbes ‘recover’ after antibiotic treatment

Bioengineer by Bioengineer
June 19, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New insight on how antibiotics affect the gut microbiome – the community of microbes that live inside us – has been published in the journal eLife.

The study in mice hints at new methods for maintaining a healthy microbiome or controlling invasion from harmful, disease-causing bacteria.

"The gut microbiome consists of a community of microbes which, when disturbed, exposes the host to risks such as infection," says first author Aspen Reese, who led the study while a PhD student at Duke University, North Carolina, US. "While it was already known that antibiotics kill or prevent the growth of bacteria in the gut, it was not clear exactly how and when those changes affect the gut environment."

To learn more about this question, Reese and her team sought to understand what ecological changes happen to microbiota during and after treatment with broad-spectrum antibiotics – treatments that act against a wide range of harmful bacteria.

The scientists began by administering antibiotics to mice over five days to broadly inhibit their gut bacteria. They found that the gut's redox potential – a measure of the chemical environment including an estimate of how easily organisms are able to respire within it – increased under antibiotic treatment. While evidence suggested that these redox shifts were associated with the host immune system, the shifts also occurred when gut microbial communities were treated with antibiotics in an artificial gut that had no immune system.

"We also saw that as antibiotics removed bacteria and reduced their metabolic rates in the mouse gut, there was an increase in oxidising agents called electron acceptors," Reese explains. "This new environmental state meant that the microbial community which recolonised after treatment looked very different from the original community."

The bacteria that appeared immediately following treatment, including some potentially harmful species, were able to take advantage of the electron acceptors to grow quickly. As they grew, they used up the excess resources, causing the gut environment to return to its normal state. However, this did not guarantee recovery of the original microbial community.

"Antibiotics may drive some microbe species extinct in a gut community, so new microbial immigrants from outside the mouse – in this case from an untreated mouse in the same cage – were likely needed to return the microbiota to its original state," says senior author Lawrence David, Assistant Professor of Molecular Genetics and Microbiology at Duke University.

Together, these results suggest new ecological models for how antibiotics reshape the gut microbiome and how redox shifts could be associated with intestinal disease, with changes in electron acceptor availability setting the stage for post-antibiotic recolonisation of gut bacteria.

"In the future, our work could help inform the development of drugs that either include chemical alterations of redox potential, or that introduce competitors for excess electron acceptors, to help treat microbial disorders or prevent antibiotic-associated infections," Reese concludes.

###

Reference

The paper 'Antibiotic induced changes in the microbiota disrupt redox dynamics in the gut' can be freely accessed online at https://doi.org/10.7554/eLife.35987. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contacts

Emily Packer, Senior Press Officer
eLife
[email protected]
01223 855373

Karl Bates, Director of Research Communications
Duke University
[email protected]
+1 919 681 8054

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org.

Media Contact

Emily Packer
[email protected]
@elife

http://www.elifesciences.org

http://elifesciences.org/for-the-press/ebc692b6/scientists-reveal-how-gut-microbes-recover-after-antibiotic-treatment

Related Journal Article

http://dx.doi.org/10.7554/eLife.35987

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Digital Diabetes Screening’s B2C Potential in Switzerland

February 8, 2026

Resilient Together: A Promising Post-Diagnosis Intervention

February 8, 2026

Barriers and Facilitators to Smoking Cessation for HIV+ Men

February 8, 2026

Community Involvement Eases Depression in China’s Empty Nesters

February 8, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping NYC Foot Traffic: Insights for Urban Planning

Evaluating Digital Diabetes Screening’s B2C Potential in Switzerland

Resilient Together: A Promising Post-Diagnosis Intervention

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.