• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists piece together DNA repair pathway implicated in breast, ovarian, and prostate cancers

Bioengineer by Bioengineer
November 15, 2023
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAPEL HILL, N.C. – Our DNA is not indestructible. Throughout the course of our lives, DNA can break in response to natural and environmental factors. Thankfully, our bodies have dedicated enzymes and pathways which can glue our broken DNA back together through several different mechanisms, known as DNA repair pathways.

Pol Theta and Delta

Credit: Stroik et al.

CHAPEL HILL, N.C. – Our DNA is not indestructible. Throughout the course of our lives, DNA can break in response to natural and environmental factors. Thankfully, our bodies have dedicated enzymes and pathways which can glue our broken DNA back together through several different mechanisms, known as DNA repair pathways.

Some cancers, however, can hijack these pathways for their own benefit. Susanna Stroik, PhD, and Dale Ramsden, PhD, both researchers in the Department of Biochemistry and Biophysics in the UNC School of Medicine and the UNC Lineberger Comprehensive Cancer Center, have pieced together the lesser-known DNA repair pathway, called polymerase theta-mediated end joining (TMEJ).

The pathway – which has been found to be upregulated in many patients with hereditary breast cancer, ovarian cancer, and prostate cancer, specifically those involving BRCA1 and BRCA2 mutations – has been laid out step by step in a published article in Nature, and the new knowledge could lead to new therapies for cancer.

“People with these breast cancer mutations, their cancers rely on polymerase theta’s repair pathway to keep the tumors alive and repair DNA damage in the cancerous tissue,” said Stroik, a postdoctoral researcher in Ramsden’s lab. “Now that we know more about this pathway, scientists could, in theory, produce a drug that could disrupt key pieces of the pathway in cancer cells, as opposed to using conventional chemotherapies that destroy healthy cells along with the cancer.”

Polymerase Theta’s Discovery

Out of all DNA repair pathways, TMEJ has been the most elusive. Richard Wood, PhD, a distinguished professor at University of Texas MD Anderson Cancer Center played a key role in the first characterization of polymerase theta in 2003.

Over the next 15 years, multiple labs, including the Wood, Ramsden, and Gupta labs (also at Lineberger Comprehensive Cancer Center), were able to link polymerase theta to DNA repair (TMEJ) and cancer. Sylvie Doublié, PhD, an alumnus of UNC-Chapel Hill and professor of microbiology and molecular genetics at the University of Vermont, then solved the first structure of polymerase theta.

Together, and with other scientists from Penn State and New York University, these researchers were dedicated to understanding precisely what steps are involved in TMEJ, and which of those steps polymerase theta does and does not perform.

With the help of these collaborators, Stroik was able to use a wide variety of cutting-edge experimental approaches to fill in the gaps in our understanding of the TMEJ pathway. Critically, she discovered that another polymerase, called polymerase delta, uses a buddy system with polymerase theta to assist it in this repair pathway.

A Unique Buddy System

Stroik’s research showed that polymerase theta is good at some things, but not others.

“It makes a lot of errors and it’s not capable of creating large swaths of DNA at once,” said Stroik. “What was so beautiful and kind of elegant about the whole discovery is that there are two different enzymes alternating between pathway steps and helping each other out.”

When a double stranded break occurs, both strands of DNA are cut at the same spot, much like scissors severing a braid of hair. Polymerase theta acts quickly, grabbing the two single strands of DNA, matching up the closest base pairs to the break, and holding them together.

However, this often leaves some residual flaps of single stranded DNA at the ends. Polymerase delta jumps in to cut the extraneous flaps, giving polymerase theta enough room to start synthesizing new DNA to fill in gaps in the DNA strands. Finally, polymerase delta jumps in one last time to help polymerase theta complete synthesis.

Stroik had another breakthrough finding: polymerases theta and delta are physically attached to one another. This new information could prove to be especially useful to drug developers hoping to create a new cancer treatment by drugging this interaction.

Cancer Treatment Potential

Since many cancers make use of the TMEJ pathway to keep tumors alive, many researchers have investigated creating drugs that can interfere with the pathway, essentially preventing cancer from repairing itself, leading to its eventual demise.

“Anytime you find new pieces of the pathway, you can ‘drug’ it,” said Ramsden.

Stroik and Ramsden’s new research will contribute to ongoing basic studies in polymerases theta and delta, while also aiding new cancer drugs called polymerase theta inhibitors, which are currently in clinical trials.

About UNC School of Medicine

The UNC School of Medicine (SOM) is the state’s largest medical school, graduating more than 180 new physicians each year. It is consistently ranked among the top medical schools in the US, including 5th overall for primary care by US News & World Report, and 6th for research among public universities. More than half of the school’s 1,700 faculty members served as principal investigators on active research awards in 2021. Two UNC SOM faculty members have earned Nobel Prize awards.

# # # #



Journal

Nature

DOI

10.1038/s41586-023-06729-7

Article Title

Stepwise requirements for polymerases δ and θ in theta-mediated end joining

Article Publication Date

15-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Hypoalbuminemia, Kernicterus, and Bilirubin-Albumin Ratio Explained

Hypoalbuminemia, Kernicterus, and Bilirubin-Albumin Ratio Explained

July 31, 2025
Noninvasive Retinal Scan Detects Kidney Disease Types

Noninvasive Retinal Scan Detects Kidney Disease Types

July 31, 2025

How Dietary Fat Sources Affect Cancer Progression in Obesity

July 31, 2025

Faster Team Launch Speeds Urgent Neonatal Retrievals

July 31, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hypoalbuminemia, Kernicterus, and Bilirubin-Albumin Ratio Explained

Neonatal Brain Volume Predicts Executive Function in Preterms

Noninvasive Retinal Scan Detects Kidney Disease Types

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.