• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists make progress on unravelling the puzzle of merging black holes

Bioengineer by Bioengineer
April 5, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Astrophysicists at the University of Birmingham have made progress in understanding a key mystery of gravitational-wave astrophysics: how two black holes can come together and merge.

During its first four months of taking data, Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) detected gravitational waves from two mergers of pairs of black holes, GW150914 and GW151226, along with the statistically less significant black hole merger candidate LVT151012.

The first confirmed detection of gravitational waves occurred on September 14 2015 at 5.51am Eastern Daylight Time by both of the twin LIGO detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. It confirmed a major prediction of Albert Einstein's 1915 general theory of relativity and opened an unprecedented new window onto the cosmos. However, we still do not know how such pairs of merging black holes form.

A new paper, published in Nature Communications, describes the results of an investigation into the formation of gravitational-wave sources with a newly developed toolkit named COMPAS (Compact Object Mergers: Population Astrophysics and Statistics).

In order for the black holes to merge within the age of the Universe by emitting gravitational waves, they must start out very close together by astronomical standards, no more than about a fifth of the distance between the Earth and the Sun. However, massive stars, which are the progenitors of the black holes that LIGO has observed, expand to be much larger than this in the course of their evolution. The key challenge, then, is how to fit such large stars within a very small orbit. Several possible scenarios have been proposed to address this.

The Birmingham astrophysicists, joined by collaborator Professor Selma de Mink from the University of Amsterdam, have shown that all three observed events can be formed via the same formation channel: isolated binary evolution via a common-envelope phase. In this channel, two massive progenitor stars start out at quite wide separations. The stars interact as they expand, engaging in several episodes of mass transfer. The latest of these is typically a common envelope – a very rapid, dynamically unstable mass transfer that envelops both stellar cores in a dense cloud of hydrogen gas. Ejecting this gas from the system takes energy away from the orbit. This brings the two stars sufficiently close together for gravitational-wave emission to be efficient, right at the time when they are small enough that such closeness will no longer put them into contact. The whole process takes a few million years to form two black holes, with a possible subsequent delay of billions of years before the black holes merge and form a single black hole.

The simulations have also helped the team to understand the typical properties of the stars that can go on to form such pairs of merging black holes and the environments where this can happen. For example, the team concluded that a merger of two black holes with significantly unequal masses would be a strong indication that the stars formed almost entirely from hydrogen and helium, with other elements contributing fewer than 0.1% of stellar matter (for comparison, this fraction is about 2% in the Sun).

First author Simon Stevenson, a PhD student at the University of Birmingham, explained: "The beauty of COMPAS is that it allows us to combine all of our observations and start piecing together the puzzle of how these black holes merge, sending these ripples in spacetime that we were able to observe at LIGO."

Senior author Professor Ilya Mandel added: "This work makes it possible to pursue a kind of 'palaeontology' for gravitational waves. A palaeontologist, who has never seen a living dinosaur, can figure out how the dinosaur looked and lived from its skeletal remains. In a similar way, we can analyse the mergers of black holes, and use these observations to figure out how those stars interacted during their brief but intense lives."

###

Contact

For a copy of the full paper, interviews, or more information please contact Liz Bell, Communications Manager for Science and Technology at the University of Birmingham, on +44 (0)121 414 5134.

For out of hours media enquiries, please call: +44 (0) 7789 921 165.

Notes to editors

The work also involved University of Birmingham PhD students Alejandro Vigna Gomez, Jim Barrett and Coenraad Neijssel, and undergraduate David Perkins.

Media Contact

Liz Bell
[email protected]
44-012-141-45134
@unibirmingham

http://www.bham.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Why People Avoid Using Alcohol and Cannabis Together

November 11, 2025

Insights on a National Call Center During COVID-19

November 11, 2025

Gene Variant Boosts ATXN7L3B Expression In Vivo

November 11, 2025

Transforming Food Waste into Resources with Black Soldier Fly

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why People Avoid Using Alcohol and Cannabis Together

Insights on a National Call Center During COVID-19

Gene Variant Boosts ATXN7L3B Expression In Vivo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.