• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists make critical insights into T-cell development

Bioengineer by Bioengineer
August 11, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mutations in the gene encoding the enzyme protein tyrosine phosphatase N2 (PTPN2) have been associated with the development of autoimmune disease including Type 1 diabetes, Crohn's Disease and rheumatoid arthritis.

In important fundamental research, Monash University scientists have identified a crucial part of the enzyme's role in early T-cell development, and have shown that decreased levels of this enzyme can lead to the type of T-cells that can contribute to the development of autoimmune disease.

Autoimmune diseases represent a broad spectrum of diseases, which arise when immune responses are directed against, and damage, the body's own tissues. Collectively their incidence exceeds that of cancer and heart disease and they are a leading cause of death and disability, in particular in the Western world.

The Monash Biomedicine Discovery Institute researchers had already shown in studies over the years that decreased levels of PTPN2 result in T-cells attacking the body's own cells and tissues.

In a paper published this week in the Journal of Experimental Medicine, they drilled deeper, exploring roles for the enzyme in early T-cell development and the development of particular T-cell subsets (αβ and γδ) implicated in the development of different autoimmune and inflammatory diseases.

By removing the gene coding for PTPN2 in laboratory trials, the scientists found that the developmental process for T-cells was skewed towards the generation of γδ T cells with pro-inflammatory properties that are known to contribute to the development of different diseases including Irritable Bowel Disease, Crohn's Disease and rheumatoid arthritis.

"This is an important advance in our understanding of critical checkpoints in T-cell development," lead researcher Professor Tony Tiganis said.

"It helps decide whether the progenitors go on the become T-cells or something else; if they become one type of T-cell or another type," he said.

As part of the study, the researchers looked at the pathways that PTPN2 regulates.

"There are drugs that target some of these pathways – potentially we might be able to use existing drugs to target these pathways in the context of autoimmune and inflammatory diseases to help a subset of patients with a deficiency in this gene, although that is a long way off," Professor Tiganis said.

First author Dr Florian Wiede said, "Understanding the mechanisms that govern early T-cell development and how these are altered in human disease may ultimately afford opportunities for novel treatments. This is very exciting."

###

The study was conducted in collaboration with scientists from the Walter and Eliza Hall Institute and Peter Doherty Institute.

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media Contact

Monash Media
[email protected]
61-399-034-840
@MonashUni

http://www.monash.edu.au

http://jem.rupress.org/content/early/2017/08/09/jem.20161903

Related Journal Article

http://dx.doi.org/10.1084/jem.20161903

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

HBB Mutation Frequency in Nigerian, Zimbabwean Populations

November 16, 2025
blank

Characterizing UGT Family: Key Role in Blueberry Development

November 16, 2025

LMNB2 Modulates p38 MAPK to Influence Esophageal Cancer

November 16, 2025

Tracing Canine Hemoplasma in Türkiye: Molecular Insights

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HBB Mutation Frequency in Nigerian, Zimbabwean Populations

Characterizing UGT Family: Key Role in Blueberry Development

Loliolide: A Valuable Green Monoterpenoid Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.