• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists jump hurdle in HIV vaccine design

Bioengineer by Bioengineer
May 26, 2017
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA – May 26, 2017 – Scientists at The Scripps Research Institute (TSRI) have made another important advance in HIV vaccine design. The development was possible thanks to previous studies at TSRI showing the structures of a protein on HIV's surface, called the envelope glycoprotein. The scientists used these structures to design a mimic of the viral protein from a different HIV subtype, subtype C, which is responsible for the majority of infections worldwide.

The new immunogen is now part of a growing library of TSRI-designed immunogens that could one day be combined in a vaccine to combat many strains of HIV.

"All of this research is going toward finding combinations of immunogens to aid in protecting people against HIV infection," said TSRI Professor Ian Wilson, Hanson Professor of Structural Biology and chair of the Department of Integrative Structural and Computational Biology at TSRI.

The research, published recently in the journal Immunity, was led by Wilson and TSRI Professor of Immunology Richard Wyatt, who also serves as Director of Viral Immunology for the International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at TSRI.

The new study was published alongside a second study in Immunity, led by scientists at the Karolinska Institute in Stockholm, which showed that the vaccine candidate developed in the TSRI-led study can elicit neutralizing antibodies in non-human primates.

"Together, the two studies reiterate how structure-based immunogen design can advance vaccine development," said Wyatt.

Solving the Clade C Structure

HIV mutates rapidly, so there are countless strains of HIV circulating around the world. Of these strains, scientists tend to focus on the most common threats, called clades A, B and C.

Like a flu vaccine, an effective HIV vaccine needs to protect against multiple strains, so researchers are designing a set of immunogens that can be given sequentially or as a cocktail to people so their immune systems can prepare for whatever strain they come up against.

In 2013, TSRI scientists, led by Wilson and TSRI Associate Professor Andrew Ward, determined the structure of a clade A envelope glycoprotein, which recognizes host cells and contains the machinery that HIV uses to fuse with cells. Because this is the only antibody target on the surface of HIV, an effective HIV vaccine will have to trigger the body to produce antibodies to neutralize the virus by blocking these activities.

Building on the previous original research, the scientists in the new study set out to solve the structure of the clade C glycoprotein and enable the immune system to fight clade C viruses.

"Clade C is the most common subtype of HIV in sub-Saharan Africa and India," explained study co-first author Javier Guenaga, an IAVI collaborator working at TSRI. "Clade C HIV strains are responsible for the majority of infections worldwide."

The scientists faced a big challenge: the clade C envelope glycoprotein is notoriously unstable, and the molecules are prone to falling apart.

Guenaga needed the molecules to stay together as a trimer so his co-author Fernando Garces could get a clear image of the clade C glycoprotein's trimeric structure. To solve this problem, Guenaga re-engineered the glycoprotein and strengthened the interactions between the molecules. "We reinforced the structure to get the soluble molecule to assemble as it is on the viral surface," Guenaga said.

The project took patience, but it paid off. "Despite all the engineering employed to produce a stable clade C protein, these crystals (of clade C protein) were grown in very challenging conditions at 4 degrees Celsius and it took the diffraction of multiple crystals to generate a complete dataset, as they showed high sensitivity to radiation damage," said Garces. "Altogether, this highlights the tremendous effort made by the team in order to make available the molecular architecture of this very important immunogen."

With these efforts, the glycoprotein could then stay together in solution the same way it remains together on the virus itself. The researchers then captured a high-resolution image of the glycoprotein using a technique called x-ray crystallography.

The researchers finally had a map of the clade C glycoprotein.

Vaccine Candidate Shows Promise

In a companion study, the scientists worked with a team at the Karolinska Institute to test an immunogen based on Guenaga's findings. The immunogen was engineered to appear on the surface of a large molecule called a liposome–creating a sort of viral mimic, like a mugshot of the virus.

This vaccine candidate indeed prompted the immune system to produce antibodies that neutralized the corresponding clade C HIV strain when tested in non-human primates.

"That was great to see," said Guenaga. "This study showed that the immunogens we made are not artificial molecules–these are actually relevant for protecting against HIV in the real world."

###

In addition to Wyatt, Wilson and Guenaga, the study, "Glycine substitution at helix-to-coil transitions facilitates the structural determination of a stabilized subtype C HIV envelope glycoprotein," included co-first author Fernando Garces, Natalia de Val, Viktoriya Dubrovskaya and Brett Higgins of TSRI; Robyn L. Stanfield of TSRI and IAVI; Barbara Carrette of IAVI; and Andrew Ward of TSRI, IAVI and the Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery (CHAVI-ID) at TSRI.

This work was supported by the IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery (CAVD; grants OPP1084519 and OPP1115782), CHAVI-ID (grant UM1 AI00663) and the National Institutes of Health (grants P01 HIVRAD AI104722, R56 AI084817 and U54 GM094586).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. In October 2016, TSRI announced a strategic affiliation with the California Institute for Biomedical Research (Calibr), representing a renewed commitment to the discovery and development of new medicines to address unmet medical needs. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
[email protected]
858-784-9254
@scrippsresearch

http://www.scripps.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Diabetes Fatalism: Impact on Outcomes in African Americans

October 31, 2025

Assessing Ergonomics in Special Needs Kindergarten Settings

October 31, 2025

Prenatal Probiotics: Boosting Neonatal Gut Development

October 31, 2025

Groundbreaking Study Reveals Harmful ‘Forever Chemicals’ Contaminating Australian Marsupials

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Cancer Care in Bangladesh Through Collaboration

Efficient H2O2 Production Boosted by Cobalt-Enhanced Phosphate-Functionalized Reduced Graphene Oxide/Perylenetetracarboxylic Acid Nanosheet Heterojunctions

Diabetes Fatalism: Impact on Outcomes in African Americans

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.