• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists in China identify way to treat nerve damage caused by insecticides and chemical

Bioengineer by Bioengineer
August 1, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research has uncovered a potential new therapy for the currently untreatable delayed neuropathy caused by acute exposure to insecticides or chemical weapons that attack the nervous system. The study, published in the open access journal Cell Discovery, identifies a new biological mechanism responsible for the neuropathy, as well as the drugs to treat it.

Organophosphates (OP) – the chemical compound found in insecticides, herbicides, and nerve agents such as sarin – were found to damage sensory neurons by activating a channel, called TRPA1, in the neuron cell membrane. Activation of TRPA1 caused hyperactivation of the neuron, which is known to cause neuronal damage and symptoms including burning pains on the skin, loss of muscle control and paralysis. Mice that were genetically engineered not to express TRPA1 in neuronal cells did not suffer the effects of OP poisoning that were seen in normal mice and their nerves showed no signs of damage.

Dr Zhaobing Gao, lead author from the Shanghai Institute of Materia Medica, Chinese Academy of Sciences, said: "In our study we have begun to unravel the biological mechanism which causes organophosphate-induced delayed neuropathy. Using our expertise in drug discovery we were also able to screen a Federal Drugs Administration approved drug library of around 2,000 drugs and identify two potent drugs, duloxetine and ketotifen, which alleviated the signs of neuropathy in an animal model."

Dr Gao added: "Our study provides compelling evidence that TRPA1 mediates OP-induced neuropathy and that TRPA1 can be targeted effectively with existing drugs that are approved by the Federal Drugs Administration. Further research will need to be conducted to assess the applicability of our findings to humans."

TRPA1 is a channel that mediates the movement of calcium ions into neurons. The movement of calcium ions into the neuron is an important part of the process that leads to activation of a neuron and the physiological effects such as smell, taste, vision and temperature. TRPA1 is normally activated in response to cold temperatures of environmental stimuli and is associated with producing a cold sensation, coughing, itching and pain.

Using an OP commonly found in insecticides, the authors found that the OP activated TRPA1, causing an influx of calcium ions into the neuron. They also showed that neurons stimulated by the OP produced a current and showed signs of electrical activation commonly seen in active neurons.

Although acute OP poisoning can be fatal, the initial symptoms are treatable. However, delayed neuropathy often occurs one to five weeks after exposure and at this stage no effective treatments are available.

This study is limited by the fact that all experiments were carried out in vitro or in animal models. However, the findings reveal a biological mechanism by which OPs interact with sensory neurons and present a novel explanation for how exposure to OPs leads to symptoms of neuropathy and nerve damage.

###

Media Contact

Matthew Lam
Press Manger
BioMed Central
T: +44 (0)20 3192 2722
M: +44 (0)75 4079 9187
E: [email protected]

Notes to editor:

1. Research article:
TRPA1 channel mediates organophosphate-induced delayed neuropathy
Ding et al.
Cell Discovery August 2017

DOI: 10.1038/celldisc.2017.24

During embargo period please contact Matthew Lam for a copy of the article.

After the embargo lifts, the article will be available at the journal website here: http://www.nature.com/articles/celldisc201724 Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Cell Discovery is a new fully open access international journal that publishes results of significance and originality in all areas of molecular and cell biology. Cell Discovery, published by Springer Nature in partnership with the Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), aims to provide an open access platform for scientists to publish their high quality works. The basic bar of acceptance is comparable to prestigious society journals in the respective field of the work

3. A pioneer of open access publishing, BMC has an evolving portfolio of high quality peer-reviewed journals including broad interest titles such as BMC Biology and BMC Medicine, specialist journals such as Malaria Journal and Microbiome, and the BMC series. At BMC, research is always in progress. We are committed to continual innovation to better support the needs of our communities, ensuring the integrity of the research we publish, and championing the benefits of open research. BMC is part of Springer Nature, giving us greater opportunities to help authors connect and advance discoveries across the world.

Media Contact

Matthew Lam
[email protected]
44-020-319-22722
@biomedcentral

http://www.biomedcentral.com

http://dx.doi.org/10.1038/celldisc.2017.24

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring Plastid Genome Traits in Saururaceae

October 5, 2025
blank

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Supporting Caregivers of COPD Patients: Key Insights

Exploring Plastid Genome Traits in Saururaceae

Evaluating Mid-Upper Arm Circumference for Child Thinness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.