• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists identify overgrowth of key brain structure in babies who later develop autism

Bioengineer by Bioengineer
March 25, 2022
in Biology
Reading Time: 4 mins read
0
MRI_amygdala
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAPEL HILL, NC – The amygdala is a small structure deep in the brain important for interpreting the social and emotional meaning of sensory input – from recognizing emotion in faces to interpreting fearful images that inform us about potential dangers in our surroundings. Historically the amygdala has been thought to play a prominent role in the difficulties with social behavior that are central to autism.

MRI_amygdala

Credit: (CIDD at UNC-CH)

CHAPEL HILL, NC – The amygdala is a small structure deep in the brain important for interpreting the social and emotional meaning of sensory input – from recognizing emotion in faces to interpreting fearful images that inform us about potential dangers in our surroundings. Historically the amygdala has been thought to play a prominent role in the difficulties with social behavior that are central to autism.

Researchers have long known the amygdala is abnormally large in school-age children with autism, but it was unknown precisely when that enlargement occurs. Now, for the first time, researchers from the Infant Brain Imaging Study (IBIS) Network, used magnetic resonance imaging (MRI) to demonstrate that the amygdala grows too rapidly in infancy. Overgrowth begins between six and 12 months of age, prior to the age when the hallmark behaviors of autism fully emerge, enabling the earliest diagnosis of this condition. Increased growth of the amygdala in infants who were later diagnosed with autism differed markedly from brain-growth patterns in babies with another neurodevelopmental disorder, fragile X syndrome, where no differences in amygdala growth were observed. 

Published in the American Journal of Psychiatry, the official journal of the American Psychiatric Association, this research demonstrated that infants with fragile X syndrome already exhibit cognitive delays at six months of age, whereas infants who will later be diagnosed with autism do not show any deficits in cognitive ability at six months of age, but have a gradual decline in cognitive ability between six and 24 months of age, the age when they were diagnosed with Autism Spectrum Disorder in this study. Babies who go on to develop autism show no difference in the size of their amygdala at six months. However, their amygdala begins growing faster than other babies (including those with fragile X syndrome and those who do not develop autism), between six and 12 months of age, and is significantly enlarged by 12 months. This amygdala enlargement continues through 24 months, an age when behaviors are often sufficiently evident to warrant a diagnosis of autism. 

“We also found that the rate of amygdala overgrowth in the first year is linked to the child’s social deficits at age two,” said first author Mark Shen, PhD, Assistant Professor of Psychiatry and Neuroscience at UNC Chapel Hill and faculty of the Carolina Institute for Developmental Disabilities (CIDD). “The faster the amygdala grew in infancy, the more social difficulties the child showed when diagnosed with autism a year later.”

This research – the first to document amygdala overgrowth before symptoms of autism appear – was conducted through The Infant Brain Imaging Study (IBIS) Network, a consortium of 10 universities in the United States and Canada funded through a National

Institutes of Health Autism Center of Excellence Network grant.

The researchers enrolled a total of 408 infants, including 58 infants at increased likelihood of developing autism (due to having an older sibling with autism) who were later diagnosed with autism, 212 infants at increased likelihood of autism but who did not develop autism, 109 typically developing controls, and 29 infants with fragile X syndrome. More than 1,000 MRI scans were obtained during natural sleep at six, 12, and 24 months of age.

So, what might be happening in the brains of these children to trigger this overgrowth and then the later development of autism? Scientists are starting to fit the pieces of that puzzle together.

Earlier studies by the IBIS team and others have revealed that while the social deficits that are a hallmark of autism are not present at six months of age, infants who go on to develop autism have problems as babies with how they attend to visual stimuli in their surroundings. The authors hypothesize that these early problems with processing visual and sensory information may place increased stress on the amygdala, leading to overgrowth of the amygdala.

Amygdala overgrowth has been linked to chronic stress in studies of other psychiatric conditions (e.g., depression and anxiety) and may provide a clue to understanding this observation in infants who later develop autism. 

Senior author Joseph Piven, MD, Professor of Psychiatry and Pediatrics at the University of North Carolina at Chapel Hill added, “Our research suggests an optimal time to start interventions and support children who are at highest likelihood of developing autism may be during the first year of life. The focus of a pre-symptomatic intervention might be to improve visual and other sensory processing in babies before social symptoms even appear.”

This research could not be possible without all the families and children who have participated in the IBIS study. Research sites included UNC-Chapel Hill, Washington University in St. Louis, Children’s Hospital of Philadelphia, McGill University, and University of Washington. This research was supported by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, and National Institute of Mental Health (R01-HD055741, R01-HD059854, R01-MH118362-01, R01-MH118362-02S1, T32-HD040127, U54-HD079124, K12-HD001441, R01-EB021391, U54-HD086984; NIH P50 HD103573), along with Autism Speaks and the Simons Foundation.

UNC School of Medicine contacts: Mark Derewicz, 919-923-0959, Carleigh Gabryel, 919-864-0580



Journal

American Journal of Psychiatry

DOI

10.1176/appi.ajp.21090896

Method of Research

Imaging analysis

Subject of Research

People

Article Title

Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy

Article Publication Date

25-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

High Altitude Hypoxia: Erythrocyte Metabolic Changes

October 24, 2025
Non-Thermal Methods Revolutionize Fruit Puree Quality

Non-Thermal Methods Revolutionize Fruit Puree Quality

October 24, 2025

Mapping Health Dynamics: Machine Learning in Korea, Netherlands

October 24, 2025

Novel Algorithm Enhances Disease Classification Using Extracellular Vesicles

October 24, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    184 shares
    Share 74 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ARHGAP11A: Pan-Cancer DNA Damage Biomarker Revealed

High Altitude Hypoxia: Erythrocyte Metabolic Changes

Sigh Breaths in HFOV Raise Pneumothorax Risk in Preemies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.