• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists Identify a Water-Responsive Material that Functions as a Powerful Actuator A research team with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) has made a novel discovery about a water-responsive material

Bioengineer by Bioengineer
March 14, 2022
in Biology
Reading Time: 4 mins read
0
Water Responsive Actuator in Action
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NEW YORK, March 14, 2022— Mechanical actuators generate and transfer energy into the machines and systems that we rely on in our daily lives. But despite a century of research, actuators still can’t outperform the abilities of biological muscles in terms of dexterity, power density and efficiency. These limitations are a major bottleneck to improving the functionality of bio-inspired robotics, realizing alternative energy harvesting and storage solutions, and enabling novel smart structures. A research team with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) has made a novel discovery about a water-responsive material that makes a pivotal step toward addressing these limitations.

Water Responsive Actuator in Action

Credit: Zhi-Lun Liu

NEW YORK, March 14, 2022— Mechanical actuators generate and transfer energy into the machines and systems that we rely on in our daily lives. But despite a century of research, actuators still can’t outperform the abilities of biological muscles in terms of dexterity, power density and efficiency. These limitations are a major bottleneck to improving the functionality of bio-inspired robotics, realizing alternative energy harvesting and storage solutions, and enabling novel smart structures. A research team with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) has made a novel discovery about a water-responsive material that makes a pivotal step toward addressing these limitations.

A new paper (“High energy and power density peptidoglycan muscles through super-viscous nanoconfined water”) written by the team and published in Advanced Science describes their work, which has identified peptidoglycan—a mesh-like sugar and amino acids-based polymer that forms the cell wall of most bacteria—as the most powerful actuator material.

“Peptidoglycan can quickly and powerfully expand and contract in response to the absorption and evaporation of water,” said Zhi-Lun Liu, a first co-author of the paper and a Ph.D. student with the CUNY ASRC’s Nanoscience Initiative. “This ability allowed us to use the material to create composite muscles that can actuate micro and macro structures.”

The proof-of-concept demonstrations in this work also show possible strategies for using this new type of water-responsive muscles to perform engineering tasks. “The muscles were able to rapidly bend a stiff, microscale glass fiber in less than two seconds, which is extremely challenging for existing actuators to accomplish,” said Haozhen Wang, also a first co-author of the paper and a Ph.D. student with the CUNY ASRC’s Nanoscience Initiative. “They were also able to forcefully grip, push and pull objects, which is quite promising for engineering systems.”

The researchers’ novel actuators may offer numerous advantages over traditional actuators that usually require high-pressure gas or liquid, high voltage or high temperatures to operate. Peptidoglycan allowed the team to design water responsive actuators that generate powerful actuation by using low-pressure dry and humid air. “This advance could remove design constraints and provide new possibilities for powering and driving soft robots, exoskeletons, wearable devices and miniature engineering systems,” said Xi Chen, Ph.D., the study’s principal investigator and a professor with the CUNY ASRC’s Nanoscience Initiative. “We also hope the fundamental insights of peptidoglycan’s nanofluidic systems will generate an immediate impact and drive more work to create new water-responsive materials that can power many applications, including electricity generation, sensing, thermal management, and locomotion.”

 

This study was executed in collaboration with Nanoscience and Structural Biology Initiatives at the ASRC. The work was supported with funding from the Office of Naval Research.

 

About the Advanced Science Research Center

The Advanced Science Research Center at the Graduate Center, CUNY (CUNY ASRC) is a world-leading center of scientific excellence that elevates STEM inquiry and education at CUNY and beyond. The CUNY ASRC’s research initiatives span five distinctive, but broadly interconnected disciplines: nanoscience, photonics, neuroscience, structural biology, and environmental sciences. The center promotes a collaborative, interdisciplinary research culture where renowned and emerging scientists advance their discoveries using state-of-the-art equipment and cutting-edge core facilities.

 

 

 

About The Graduate Center of The City University of New York

The CUNY Graduate Center is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students nearly 50 doctoral and master’s programs of the highest caliber, taught by top faculty from throughout CUNY — the nation’s largest urban public university. Through its nearly 40 centers, institutes, initiatives, and the Advanced Science Research Center, the Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center’s extensive public programs make it a home for culture and conversation.

###



Journal

Advanced Science

DOI

10.1002/advs.202104697

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High energy and power density peptidoglycan muscles through super-viscous nanoconfined water

Article Publication Date

14-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sex Differences in Anxiety and Depression Modulation

October 19, 2025
blank

Ovarian Hormones Curb Fear Relapse via Dopamine Pathway

October 18, 2025

RNA Sequencing Uncovers Bovine Embryo Activation Regulators

October 18, 2025

Placental DNA Mutations, Stress, and Infant Emotions

October 18, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    290 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    124 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing Aging Changes in Renal Tubulointerstitium

Reversing Cellular Aging: PURPL RNA’s Epigenetic Breakthrough

Restoring Kraak Porcelain Patterns with Generative AI

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.