• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists Identify a Water-Responsive Material that Functions as a Powerful Actuator A research team with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) has made a novel discovery about a water-responsive material

Bioengineer by Bioengineer
March 14, 2022
in Biology
Reading Time: 4 mins read
0
Water Responsive Actuator in Action
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NEW YORK, March 14, 2022— Mechanical actuators generate and transfer energy into the machines and systems that we rely on in our daily lives. But despite a century of research, actuators still can’t outperform the abilities of biological muscles in terms of dexterity, power density and efficiency. These limitations are a major bottleneck to improving the functionality of bio-inspired robotics, realizing alternative energy harvesting and storage solutions, and enabling novel smart structures. A research team with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) has made a novel discovery about a water-responsive material that makes a pivotal step toward addressing these limitations.

Water Responsive Actuator in Action

Credit: Zhi-Lun Liu

NEW YORK, March 14, 2022— Mechanical actuators generate and transfer energy into the machines and systems that we rely on in our daily lives. But despite a century of research, actuators still can’t outperform the abilities of biological muscles in terms of dexterity, power density and efficiency. These limitations are a major bottleneck to improving the functionality of bio-inspired robotics, realizing alternative energy harvesting and storage solutions, and enabling novel smart structures. A research team with the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) has made a novel discovery about a water-responsive material that makes a pivotal step toward addressing these limitations.

A new paper (“High energy and power density peptidoglycan muscles through super-viscous nanoconfined water”) written by the team and published in Advanced Science describes their work, which has identified peptidoglycan—a mesh-like sugar and amino acids-based polymer that forms the cell wall of most bacteria—as the most powerful actuator material.

“Peptidoglycan can quickly and powerfully expand and contract in response to the absorption and evaporation of water,” said Zhi-Lun Liu, a first co-author of the paper and a Ph.D. student with the CUNY ASRC’s Nanoscience Initiative. “This ability allowed us to use the material to create composite muscles that can actuate micro and macro structures.”

The proof-of-concept demonstrations in this work also show possible strategies for using this new type of water-responsive muscles to perform engineering tasks. “The muscles were able to rapidly bend a stiff, microscale glass fiber in less than two seconds, which is extremely challenging for existing actuators to accomplish,” said Haozhen Wang, also a first co-author of the paper and a Ph.D. student with the CUNY ASRC’s Nanoscience Initiative. “They were also able to forcefully grip, push and pull objects, which is quite promising for engineering systems.”

The researchers’ novel actuators may offer numerous advantages over traditional actuators that usually require high-pressure gas or liquid, high voltage or high temperatures to operate. Peptidoglycan allowed the team to design water responsive actuators that generate powerful actuation by using low-pressure dry and humid air. “This advance could remove design constraints and provide new possibilities for powering and driving soft robots, exoskeletons, wearable devices and miniature engineering systems,” said Xi Chen, Ph.D., the study’s principal investigator and a professor with the CUNY ASRC’s Nanoscience Initiative. “We also hope the fundamental insights of peptidoglycan’s nanofluidic systems will generate an immediate impact and drive more work to create new water-responsive materials that can power many applications, including electricity generation, sensing, thermal management, and locomotion.”

 

This study was executed in collaboration with Nanoscience and Structural Biology Initiatives at the ASRC. The work was supported with funding from the Office of Naval Research.

 

About the Advanced Science Research Center

The Advanced Science Research Center at the Graduate Center, CUNY (CUNY ASRC) is a world-leading center of scientific excellence that elevates STEM inquiry and education at CUNY and beyond. The CUNY ASRC’s research initiatives span five distinctive, but broadly interconnected disciplines: nanoscience, photonics, neuroscience, structural biology, and environmental sciences. The center promotes a collaborative, interdisciplinary research culture where renowned and emerging scientists advance their discoveries using state-of-the-art equipment and cutting-edge core facilities.

 

 

 

About The Graduate Center of The City University of New York

The CUNY Graduate Center is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students nearly 50 doctoral and master’s programs of the highest caliber, taught by top faculty from throughout CUNY — the nation’s largest urban public university. Through its nearly 40 centers, institutes, initiatives, and the Advanced Science Research Center, the Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center’s extensive public programs make it a home for culture and conversation.

###



Journal

Advanced Science

DOI

10.1002/advs.202104697

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High energy and power density peptidoglycan muscles through super-viscous nanoconfined water

Article Publication Date

14-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dynamic Holography via Lithium Niobate Metasurfaces

Massage Therapy Foundation Grants $299,465 for Research at Children’s Hospital of Philadelphia

New Study Uncovers How Brain Cells ‘Crosstalk’ to Communicate

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.