• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists hone long-range forecasting of US tornadoes, hail

Bioengineer by Bioengineer
May 18, 2022
in Chemistry
Reading Time: 3 mins read
0
Probability of Severe Weather
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DeKalb, Ill. — Scientists at Northern Illinois University continue to hone extended-range weather forecasting, identifying patterns halfway around the globe that will heighten the probability weeks later for hail- and tornado-producing storms in the United States.

Probability of Severe Weather

Credit: Douglas E. Miller, Northern Illinois University

DeKalb, Ill. — Scientists at Northern Illinois University continue to hone extended-range weather forecasting, identifying patterns halfway around the globe that will heighten the probability weeks later for hail- and tornado-producing storms in the United States.

New research identifies three specific orientations of atmospheric phenomena occurring near the equator over the Maritime continent that increase the probability of severe U.S. weather events three to four weeks later. Using such information to create extended-range forecasts would provide more time to raise awareness of severe weather, and potentially save lives and property.

Combing through data from 1979–2019, the scientists found 100 instances of significant fluctuations that had occurred in the Madden-Julian Oscillation (MJO)—a major eastward moving disturbance of winds, rain and pressure—and looked for correlations to U.S. severe weather weeks later.

As an MJO moves eastward along the equator, it can weaken or strengthen as it crosses the islands of the Maritime Continent, which include Indonesia and the Philippines. Of the 100 identified MJO fluctuations, 53 of these storm clusters gained strength as they crossed the Maritime Continent and entered the Pacific Ocean, causing ripples in the atmosphere and eventually changing circulation patterns over North America.

“These 53 events showcased the largest probabilities for increasing U.S. tornado and hail activity in the following three to four weeks,” said the study’s lead author, Douglas E. Miller, an NIU post-doctoral researcher.  “Different MJO characteristics led to different timing and changes in severe weather activity.”

The study—coauthored with NIU Meteorology Professor Victor Gensini and Bradford Barrett of the U.S. Air Force Office of Scientific Research—is published in the Nature Publishing Group journal Climate and Atmospheric Science.

The researchers used machine learning to separate characteristics of the 53 storm clusters according to location, strength and propagation speed. Composites of the clusters were then categorized as one of three “flavors”—weak, slow or fast.

All three types heightened probabilities of increased U.S. tornado and hail events, but different flavors took different paths, Miller said, with the slowly propagating MJO clusters providing the best “forecast of opportunity” for severe convective storms in the United States.

“Our work highlights pathways forward for better prediction and understanding of how the Madden-Julian Oscillation clusters influence U.S tornado and hail frequency,” Miller said. “While not part of this study, we saw two bursts of maximum convection this spring. Each time we verified increases in severe U.S. weather three to four weeks later.”

Past research by NIU’s Gensini, who has pioneered extended-range forecasting, had identified MJO disturbances as an influencer on severe weather in the United States. In 2019, he led a team of scientists who reported that they accurately predicted the nation’s extensive tornado outbreak in May of that year—nearly four weeks before it began. During a 13-day stretch that month, 374 tornadoes occurred, more than triple the average.

Gensini said recurring MJO modes like those identified in the new study present “forecasts of opportunity,” providing enhanced predictability of the potential for severe weather frequency. Such opportunities do not always exist because often there is no recognizable pattern.

“This new work helps us catalogue weather patterns that present these forecasts of opportunity,” Gensini said. “We’re learning that there are quite a few different flavors this convection has in terms of modulating how the overall weather pattern sets up across the United States.” 

MJO disturbances only happen once or twice each spring, so the sample size for the new study was limited, the authors said.

“The main caveat associated with this analysis is sample size,” Gensini said. “We are limited by the number of years in the study and the temporal frequency at which MJO events cycle in the North American springtime. If MJO events were examined over thousands of years, it would be likely that more than three clusters would emerge. Future work may focus on the issue of sample size by utilizing climate model simulations, allowing for more robust results.”

The research was supported by a grant to Gensini from the National Science Foundation, with computing resources provided by NIU’s Center for Research Computing and Data.



Journal

npj Climate and Atmospheric Science

DOI

10.1038/s41612-022-00263-5

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Madden-Julian oscillation influences United States springtime tornado and hail frequency

Article Publication Date

12-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Colorimetric Clues Reveal Hidden Catalysis Secrets

September 17, 2025
blank

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

School Readiness in Children Born Prematurely

Microsatellite Instability and PD-L1 in Sarcomas

High-Density Soft Biofibers Enable Advanced Sensing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.