• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists ‘fix’ bacterial tree of life

Bioengineer by Bioengineer
August 27, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The University of Queensland

Bacterial classification has been given a complete makeover by a team of University of Queensland researchers, using an evolutionary tree based on genome sequences.

The study, led by Professor Philip Hugenholtz from UQ's School of Chemistry and Molecular Biosciences and the Australian Centre for Ecogenomics (ACE), relied on a technique called metagenomics, where bacterial genomes are obtained straight from environmental samples, to create a more complete picture of the structure of the bacterial kingdom.

Professor Hugenholtz said this structure, known scientifically as taxonomy, helps us connect the relationships between living things.

"Taxonomy helps us classify living things by arranging them in a hierarchy from closely to distantly related organisms according to ranks, such as species, genus, family, order, class, phylum and domain," he said.

"It's a system that helps us understand how organisms are related to each other, just like we do for time – using seconds, minutes, hours, and so on – or for geographic locations, using a street number, street, suburb, state and country."

Professor Hugenholtz said the scientific community generally agrees that evolutionary relationships are the most natural way to classify organisms, but bacterial taxonomy is riddled with errors, due to historical difficulties.

"This is mainly because microbial species have very few distinctive physical features, meaning that there are thousands of historically misclassified species," he said.

"It's also compounded by the fact that we can't yet grow the great majority of microorganisms in the laboratory, so have been unaware of them until quite recently."

Dr Donovan Parks, the lead software developer on the project, is excited about the recent advancement of genome sequencing technology, and how it's helping reconstruct the bacterial tree of life.

"It's developed to a remarkable degree, and we can now get the entire genetic blueprints of hundreds of thousands of bacteria, including bacteria that have not yet been grown in the lab," he said.

The research team then used these genomic blueprints to construct a giant evolutionary tree of bacteria based on 120 genes that are highly conserved across the bacterial domain.

"This tree helped us create a standardised model, where we fixed all of the misclassifications and made the evolutionary timelines between bacterial groups consistent," Dr Parks said.

"For example, the genus Clostridium has been a dumping ground for rod-shaped bacteria that produce spores inside their cells, so we reclassified this group into 121 separate genus groups across 29 different families.

"We've given bacterial classification a complete makeover, and we're delighted that the scientific community is just as excited about this as we are."

The study, which also involves ACE researchers Dr Maria Chuvochina, Dr David Waite, Dr Christian Rinke, Adam Skarshewski and Pierre-Alain Chaumeil, has been published in Nature Biotechnology (DOI: 10.1038/nbt.4229).

The research teams' taxonomy is on the Genome Taxonomy Database, at gtdb.ecogenomic.org, which has been funded by an Australian Research Council Laureate Fellowship.

###

Media Contact

Phil Hugenholtz
[email protected]
61-336-53822
@uq_news

http://www.uq.edu.au

Related Journal Article

http://dx.doi.org/10.1038/nbt.4229

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

November 4, 2025
blank

Glycolysis Gene Insights from Streptomyces coelicolor M145

November 4, 2025

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.