• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists fine-tune “tweezers of sound” for contactless manipulation of objects

Bioengineer by Bioengineer
August 20, 2022
in Chemistry
Reading Time: 3 mins read
0
Tweezers of sound lift objects stably and without contact.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have successfully enhanced technology to lift small particles using sound waves. Their “acoustic tweezers” could already lift things from reflective surfaces without physical contact, but stability remained an issue. Now, using an adaptive algorithm to fine-tune how the tweezers are controlled, they have drastically improved how stably the particles can be lifted. With further miniaturization, this technology could be deployed in a vast range of environments, including space.

Tweezers of sound lift objects stably and without contact.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have successfully enhanced technology to lift small particles using sound waves. Their “acoustic tweezers” could already lift things from reflective surfaces without physical contact, but stability remained an issue. Now, using an adaptive algorithm to fine-tune how the tweezers are controlled, they have drastically improved how stably the particles can be lifted. With further miniaturization, this technology could be deployed in a vast range of environments, including space.

(For the full video, visit https://youtu.be/PoZsKjst82g)

As anyone standing next to a loudspeaker can attest to, sound waves can exert a real, physical force. With the right arrangement of “speakers” at the right frequency, amplitude, and phase, it becomes possible to superimpose those waves and setup a field of influence which can push, lift and hold physical objects. Such “acoustic tweezer” technology promises completely contactless, contamination-free manipulation of small objects.

Last year, Dr Shota Kondo and Associate Professor Kan Okubo from Tokyo Metropolitan University realized contactless lift and movement of millimeter-sized particles using a hemispherical array of small, ultrasound transducers. The transducers would be driven individually according to a unique algorithm, allowing them to set up fields of sound pressure which ultimately lifted and moved objects. However, the stability of their “acoustic tweezers” remained an outstanding issue.

Now, the same team have come up with a way of using the same setup to achieve significant enhancements in how they can lift particles from rigid surfaces. There are two “modes” in which the transducers can be driven, where opposing halves of their hemispherical array are driven in and out of phase. The team’s new insight is that different modes are more suited to doing certain things. Starting with a particle on a surface, an “in-phase” excitation mode is better at lifting and moving the particle close to the surface, with accurate targeting of individual particles only a centimeter apart. Meanwhile, an “out-of-phase” mode is more suited to bringing the lifted particle into the center of the array. Thus, using an adaptive switching between the modes, they can now leverage the best of both modes and achieve a well-controlled, stable lift, as well as more stability inside the trap once it is lifted.

This is an important step forward for a futuristic technology that could one day be deployed to manipulate samples which need to be kept strictly contamination free. The team also hopes that it might find practical application in space one day, where competing against gravity is not an issue.

This work was partially funded by the Murata Science Foundation.



Journal

Japanese Journal of Applied Physics

DOI

10.35848/1347-4065/ac51c4

Article Title

Improved mid-air acoustic tweezers using adaptive phase and amplitude control

Article Publication Date

10-Jun-2022

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pbk Boosts Myoblast Differentiation and Muscle Regeneration

Enhancing Pediatric Telemedicine and Medication Delivery in Haiti

Enhancing Student Success: Deep Learning and Fuzzy Features

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.