• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists fine-tune “tweezers of sound” for contactless manipulation of objects

Bioengineer by Bioengineer
August 20, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have successfully enhanced technology to lift small particles using sound waves. Their “acoustic tweezers” could already lift things from reflective surfaces without physical contact, but stability remained an issue. Now, using an adaptive algorithm to fine-tune how the tweezers are controlled, they have drastically improved how stably the particles can be lifted. With further miniaturization, this technology could be deployed in a vast range of environments, including space.

Tweezers of sound lift objects stably and without contact.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have successfully enhanced technology to lift small particles using sound waves. Their “acoustic tweezers” could already lift things from reflective surfaces without physical contact, but stability remained an issue. Now, using an adaptive algorithm to fine-tune how the tweezers are controlled, they have drastically improved how stably the particles can be lifted. With further miniaturization, this technology could be deployed in a vast range of environments, including space.

(For the full video, visit https://youtu.be/PoZsKjst82g)

As anyone standing next to a loudspeaker can attest to, sound waves can exert a real, physical force. With the right arrangement of “speakers” at the right frequency, amplitude, and phase, it becomes possible to superimpose those waves and setup a field of influence which can push, lift and hold physical objects. Such “acoustic tweezer” technology promises completely contactless, contamination-free manipulation of small objects.

Last year, Dr Shota Kondo and Associate Professor Kan Okubo from Tokyo Metropolitan University realized contactless lift and movement of millimeter-sized particles using a hemispherical array of small, ultrasound transducers. The transducers would be driven individually according to a unique algorithm, allowing them to set up fields of sound pressure which ultimately lifted and moved objects. However, the stability of their “acoustic tweezers” remained an outstanding issue.

Now, the same team have come up with a way of using the same setup to achieve significant enhancements in how they can lift particles from rigid surfaces. There are two “modes” in which the transducers can be driven, where opposing halves of their hemispherical array are driven in and out of phase. The team’s new insight is that different modes are more suited to doing certain things. Starting with a particle on a surface, an “in-phase” excitation mode is better at lifting and moving the particle close to the surface, with accurate targeting of individual particles only a centimeter apart. Meanwhile, an “out-of-phase” mode is more suited to bringing the lifted particle into the center of the array. Thus, using an adaptive switching between the modes, they can now leverage the best of both modes and achieve a well-controlled, stable lift, as well as more stability inside the trap once it is lifted.

This is an important step forward for a futuristic technology that could one day be deployed to manipulate samples which need to be kept strictly contamination free. The team also hopes that it might find practical application in space one day, where competing against gravity is not an issue.

This work was partially funded by the Murata Science Foundation.



Journal

Japanese Journal of Applied Physics

DOI

10.35848/1347-4065/ac51c4

Article Title

Improved mid-air acoustic tweezers using adaptive phase and amplitude control

Article Publication Date

10-Jun-2022

Share13Tweet8Share2ShareShareShare2

Related Posts

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025
NME1 Enzyme Catalyzes Its Own Oligophosphorylation

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Area 46: The Hub of Emotion Regulation in Marmosets

New Insights into the Cumulative HBsAg/HBV DNA Ratio in Immune-Tolerant Hepatitis B Patients

Anti-PD-1 Boosts Gastric Cancer with Hepatitis B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.