• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists find that nanoparticles from tattoos travel inside the body

Bioengineer by Bioengineer
September 12, 2017
in Biology
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credits: ESRF/Ines Schreiver

The elements that make up the ink in tattoos travel inside the body in micro and nanoparticle forms and reach the lymph nodes according to a study published in Scientific Reports on 12 September by scientists from Germany and the ESRF, the European Synchrotron, Grenoble (France). It is the first time that there is analytical evidence of the transport of various organic and inorganic pigments and toxic element impurities as well as in depth characterization of the pigments ex vivo in tattooed tissues. Two ESRF beamlines have been crucial in this breakthrough.

"When someone wants to get a tattoo, they are often very careful in choosing a parlour where they use sterile needles that haven“t been used previously. No one checks the chemical composition of the colours, but our study shows that maybe they should", explains Hiram Castillo, one of the authors of the study and scientist at the ESRF.

The reality is that little is known about the potential impurities in the colour mixture applied to the skin. Most tattoo inks contain organic pigments, but also include preservatives and contaminants like nickel, chromium, manganese or cobalt. Besides carbon black, the second most common ingredient used in tattoo inks is titanium dioxide (TiO2), a white pigment usually applied to create certain shades when mixed with colorants. TiO2 is also commonly used in food additives, sun screens, paints. Delayed healing, along with skin elevation and itching, are often associated with white tattoos, and by consequence with the use of TiO2. Scientists from the ESRF, the German Federal Institute for Risk Assessment, Ludwig-Maximilians University, and the Physikalisch-Technische Bundesanstalt have managed to get a very clear picture on the location of titanium dioxide once they get in the tissue. This work was done on the ESRF beamlines or experimental stations, ID21 and ID16B.

The hazards that potentially derive from tattoos were as yet only investigated by chemical analysis of the inks and their degradation products in vitro. "We already knew that pigments from tattoos would travel to the lymph nodes because of visual evidence: the lymph nodes become tinted with the colour of the tattoo. It is the response of the body to clean the site of entrance of the tattoo. What we didn't know is that they do it in a nano form, which implies that they may not have the same behaviour as the particles at a micro level. And that is the problem: we don't know how nanoparticles react", explains Bernhard Hesse, one of the two first authors of the study and ESRF visiting scientist.

X-ray fluorescence measurements on ID21 allowed the team to locate titanium dioxide at the micro and nano range in the skin and the lymphatic environment. They found a broad range of particles with up to several micrometres in size in human skin but only smaller (nano) particles transported to the lymph nodes. This may lead to the chronic enlargement of the lymph node and lifelong exposure. Scientists also used the technique of Fourier transform infrared spectroscopy to assess biomolecular changes in the tissues in the proximity of the tattoo particles.

Altogether the scientists report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that are sometimes linked to cutaneous inflammation and other adversities upon tattooing.

Then next step for the team is to inspect further samples of patients with adverse effects in their tattoos in order to find links with chemical and structural properties of the pigments used to create these tattoos.

###

Scientists Contacts:

Bernhard Hesse
[email protected]
Phone : 33-476-88-26-07

Hiram Castillo
[email protected]
Phone : 33-661459749

Media Contact

Delphine Chenevier
[email protected]
33-047-688-2604
@esrfsynchrotron

http://www.esrf.fr

Share14Tweet8Share2ShareShareShare2

Related Posts

HKU25 Clade MERS Coronaviruses Utilize ACE2 Receptor

HKU25 Clade MERS Coronaviruses Utilize ACE2 Receptor

October 30, 2025
blank

Halotolerant Staphylococcus Boosts Rice Salinity Tolerance

October 30, 2025

HIV and Antiretrovirals Impact Diverse Gut Microbiomes

October 30, 2025

ZmDapF1 Variation Boosts Maize Drought Resilience

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Reveals Common Misconceptions Among Americans About Alcohol and Cancer Risk

Streamlined CRISPR Evaluation Boosts Rare Variant Discovery

Neonatal Brain Injury Assessed with Diffusional Kurtosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.