• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists find self-healing catalyst for potential large-scale use in hydrogen production

Bioengineer by Bioengineer
April 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: EPFL

Researchers working within NCCR MARVEL have discovered a self-healing catalyst that can be used to release hydrogen through the hydrolytic dehydrogenation of ammonia borane. The catalyst, SION-X, is based on the abundant mineral Jacquesdietrichite, is sustainable, air stable and can be easily regenerated, stored and handled. These characteristics mean that it may offer significant advantages over existing catalysts used in the production of the clean and renewable energy carrier hydrogen. The research has been published in the Journal of Materials Chemistry A.

Hydrogen (H2) is a clean and renewable energy carrier and is considered to be an ideal candidate for future mobile and stationary applications. Large-scale use requires safe and efficient storage and release of H2, however, and this remains a challenge despite investigation into multiple systems of hydrogen storage.

In recent years, some research has focused on boron-nitrogen-based (B-N) hydride compounds because they are able to store and release significant quantities of H2. Of the compounds, the simplest, ammonia borane (AB), is particularly promising because it does not suffer from self-hydrolysis in water, it has a high H2 content, low molecular weight, is non-toxic and has particularly high stability in both aqueous solutions and air–it has great potential for on-board applications in transportation.

In terms of techniques, hydrolysis at room temperature has proven to be the most benign and efficient method of releasing hydrogen from AB preventing the use of elevated temperatures or any other toxic and expensive solvents. A catalyst is often needed however to drive the hydrolysis of AB. And while a range of catalysts capable of releasing hydrogen efficiently from AB exist, they suffer from a number of disadvantages. Those based on noble metals are expensive, non-sustainable, and impracticable for large-scale applications. Non-noble-metal catalysts are air sensitive and can be easily oxidized and so require special handling and storage, and can be difficult to regenerate. On top of it, catalytic activity is partially decreased or even completely disabled after few cycles of the reaction, as, for example, in the case of earth-abundant transition metals.

These drawbacks motivated the researchers, led by Dr. Kyriakos C. Stylianou of EPFL and NCCR MARVEL, to try to find better catalysts. Ideal candidates should be based on abundant elements, air stable, and easily regenerated, stored and handled. Of all these strong points, the researchers considered regeneration, or self-healing–the ability of the catalyst to spontaneously repair itself during normal operations–to be the most attractive. Indeed, it’s critical for practical applications because the catalyst’s stability is directly linked to its economic viability.

Their novel, self-healing sustainable catalyst, described in the paper Discovery of a Self-healing Catalyst for the Hydrolytic Dehydrogenation of Ammonia Borane, seems to fit the bill. The catalyst, dubbed SION-X, is the synthetic form of the Jacquesdietrichite (Cu2[(BO)(OH) 2](OH)3), a mineral first found in the Tachgagalt mine in Morocco in 1999. The scientists first obtained it as a blue powder after exposing the residue of the reaction between a copper-based metal-organic framework (MOF) and AB to open air. When they used SION-X in the hydrolysis of AB, they obtained more than 90% conversion of H2 in about 45 minutes. During the process, it transformed to copper(0) nanoparticles. When the reaction mixture was then exposed to air, the blue powder of SION-X was self-healed and reformed from copper(0) nanoparticles. They were able to perform 10 cycles of catalysis-regeneration with the activity of SION-X remaining unchanged.

This self-healing process, in which the catalyst restored its structural integrity in open air without applying heat, pressure or electrical bias, is hugely important for prolonging the lifetime of the catalyst and makes SION-X a good candidate for use in large-scale hydrolytic dehydrogenation of AB.

“The self-healing catalysis of SION-X in the absence of any extra energy input gives a new perspective in heterogeneous catalysis for energy-related applications,” the researchers said.

###

Media Contact
Kyriakos Stylianou
[email protected]

Original Source

http://nccr-marvel.ch/highlights/2019-04SIONXcat

Related Journal Article

http://dx.doi.org/10.1039/C9TA02123J

Tags: Chemistry/Physics/Materials SciencesEnergy SourcesEnergy/Fuel (non-petroleum)
Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Uncovers Why Modern Proteins Were Selected by Nature

New Study Uncovers Why Modern Proteins Were Selected by Nature

September 29, 2025

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

September 29, 2025

Physicists Narrow the Search for Elusive Dark Matter

September 29, 2025

Lab Breakthrough in Mimicking Star Formation Wins Prestigious John Dawson Award

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    58 shares
    Share 23 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Lithium-Ion Batteries Through Solvation Engineering

Cipepofol: Safe, Effective for Elderly Digestive Endoscopy

Advancing Neonatal Nephrology: Insights from First Symposium

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.