• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists effectively disrupt communication between parasites that spread disease

Bioengineer by Bioengineer
March 9, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prof. Shulamit Michaeli, Dean of Bar-Ilan's Mina and Everard Goodman Faculty of Life Sciences, and member of the Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), has demonstrated how parasite migration can be controlled by creating an unfavorable environment or by damaging cell health, since parasites under stress secrete vesicles that disrupt their socially coordinated movement in groups. This research has just been published in the peer-reviewed journal PLOS Pathogens.

Traveling from host to host Michaeli's team, including students Dror Eliaz and Sriram Kannan, study trypanosomatids, single-cell parasites which cause major diseases such as African sleeping sickness, leishmaniosis and Chagas' disease, affecting millions of people. Leishmaniasis, for example, is found in 88 countries and over 300 million people are at risk of infection. African trypanosomes infect cattleand the annual economic loss due to this disease is estimated at about US$2 billion. The American Chagas' disease causes major heart and intestinal malfunction. Around 90 million are at risk of infection, with five to eight million people affected annually.

Trypanosome parasites are transmitted to mammals by the blood-sucking tsetse fly. The parasites' stopover in the insect-host has two stages. They live in the insect's gut for two to three weeks and then migrate to the saliva glands. When the fly has its next meal, the parasites are transferred via the saliva to the prey, infecting its bloodstream. In this way the mammal now becomes host to the parasite, and the disease is spread. To complete their two-stage stay in the insect, the parasites must undertake an epic journey of active migration fraught with perils, such as the fly's digestive enzymes, immune system and the need to cross the intestinal barrier.

With a little help from my friends Research has shown that these insect-stage parasites are capable of group behavior, using cell-cell signaling to promote collective migration. By moving in numbers they are better able to transverse the fly's intestines, complete the journey to the saliva glands, and proliferate the disease. But how do these parasites communicate in order to coordinate their movements in response to signals from neighboring parasites? Until now, the signaling mechanism has been unclear. Prof. Michaeli's new study describes a novel process demonstrating that under stress the parasites secrete exosomes which communicate a message to neighboring cells that something is wrong. Exosomes are small vesicles secreted by cells, implicated in cell-cell communication and the transmission of disease. Depending on the type and physiological state of the secreting cell, exosome interaction with recipient cells may help ward off disease or, alternatively, exacerbate it. For example, they have recently been shown to influence the proliferation and metastasis of melanoma tumor cells.

Keep your distance

Michaeli's team interfered with the parasite communication system by inducing "stress" in parasite cells causing them to release exosomes. They found that the presence of these exosome-secreting cells disrupted the normal migration of the parasite cells. Parasite "scouts" which monitor the environment in the insect-host pick up "keep away" messages from these damaged cells, and, in turn, communicate with the migrating parasite population, messaging them to avoid contact with the "unfit" ones. When exosome secretion was inhibited no effect on the migration was observed. Michaeli's results strongly suggest that exosomes act as a repellent that drives the fit parasites away from either damaged cells or an unfavorable environment.

Prof. Michaeli explains the importance of these findings. "A Biblical story relates the collapse of the Tower of Babel because the people lost the common language with which to communicate with each other. Uncovering how to shut down the parasites' communication system may lead to the development of drugs to treat and prevent the spread of these devastating diseases."

###

Prof. Michaeli's research was supported by the Israel Science Foundation and the Binational Science Foundation. She is the incumbent of the David and Inez Myers Chair in Gene Expression and Infectious Disease at Bar-Ilan University.

Media Contact

Elana Oberlander
[email protected]
972-546-603-432
@ubarilan

http://www.biu.ac.il

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revolutionizing Fluid Mechanics: Stochastic Simulation Insights

October 12, 2025

Proteomic Changes Post Anti-VEGF in AMD Patients

October 12, 2025

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Factors Influencing GIZ Technology Adoption by Nigerian Potato Farmers

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1224 shares
    Share 489 Tweet 306
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Fluid Mechanics: Stochastic Simulation Insights

Proteomic Changes Post Anti-VEGF in AMD Patients

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.