• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists discover roadblocks that stop brain white matter healing

Bioengineer by Bioengineer
May 7, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image courtesy of Stephen Back, M.D., Ph.D., Oregon Health & Science University.

A new study identifies a molecule that may be critical to the repair of white matter, the fatty tissue wrapped around parts of brain cells that helps speed up communication. Damage to white matter is associated with several conditions, including multiple sclerosis and cerebral palsy, and can occur in the brains of preterm babies. New findings suggest that the molecule triggers a pathway that is normally used by the immune system to prevent excessive damage but may contribute to chronic white matter injury by completely blocking repair operations. The study, published in the May issue of Journal of Clinical Investigation, was funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

"This study uncovers a new player in white matter disease and identifies a potential drug target," said Jim Koenig, Ph.D., program director at NINDS. "It also describes a unique situation in which the brain tries to take over immune system functions, with devastating results."

White matter, also known as myelin, is formed by oligodendrocytes, specialized cells that come from developing cells called oligodendrocyte progenitor cells (OPCs). Studies have shown that in cases of chronic white matter injury, OPCs accumulate in the lesions, ready to help, but for some reason are not able to produce myelin. A very large molecule called hyaluronic acid (HA) also accumulates in the lesions and is broken down into small fragments that are thought to prevent OPCs from producing myelin.

A team led by Stephen Back, M.D., Ph.D., professor of pediatrics and neurology at the Oregon Health & Science University in Portland, took a detailed look at the HA fragments to see how they block myelin repair. Using state-of-the-art techniques, Dr. Back and his colleagues were able to create HA fragments of different sizes.

Results showed that only one specific size of HA, the 210 kDa fragment, had an effect on OPC proliferation.

Dr. Back and his team treated rat cells that mimicked white matter disease with the 210 kDa HA fragment. They discovered that the HA initially turned on molecules associated with myelination but then shut them down completely, a strategy that is similar to immune tolerance, which is used by the immune system to prevent severe tissue injury from an ongoing, damaging response to bacteria and viruses.

"We showed that HA creates not just a roadblock to myelin repair after injury, it also shuts down all of the possible detours," said Dr. Back. "Tolerance can be helpful in preventing the brain from repairing itself too quickly, but in some disease conditions, it can turn into a detrimental response."

Dr. Back and his team also discovered that the 210 kDa fragment signals to TLR4, a protein that oversees immune tolerance, to activate FoxO3, which helps control the activity of genes involved in myelin repair. This activation of FoxO3 eventually leads to a decrease in the activity of myelin-related genes and a slowdown in white matter repair. However, this process only takes place if HA is present.

When Dr. Back and his group looked at human brain tissue affected by white matter injury and multiple sclerosis, they found activated FoxO3 in OPCs that were blocked from producing myelin.

In the brain, the large, intact HA makes up most of the extracellular matrix, the substance found between cells. Damage to the extracellular matrix leads to inflammation and this can occur in white matter injury.

"For decades HA was thought of as simply a glue holding everything together. In recent years, we have come to learn how critical this molecule is for various pathways and potentially, many neurological disorders," said Dr. Back.

More research is needed to learn about the molecules involved in white matter repair as well as the role of different HA fragments in these processes.

###

The study was funded by NINDS (NS054044, NS045737), the National Institute on Aging (AG31892), American Stroke Association, Congressionally Directed Medical Research Programs (MS160144) and the National Multiple Sclerosis Society.

For more information:

http://www.ninds.nih.gov

https://www.ninds.nih.gov/Disorders/All-Disorders/Multiple-Sclerosis-Information-Page

Reference:

Srivastava T et al. A TLR/AKT/FoxO3 immune-tolerance like pathway disrupts the repair capacity of oligodendrocyte progenitors. Journal of Clinical Investigation. 2018 May 1;128(5):2025-2041. doi: 10.1172/JCI94158.

###

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact

Barbara McMakin
[email protected]
@NINDSnews

http://www.ninds.nih.gov

Share12Tweet7Share2ShareShareShare1

Related Posts

Genetic Diversity of 10 DIP-STR Markers in US Groups

November 18, 2025

Maternal MSG Exposure Triggers Inflammation, Metabolic Issues

November 18, 2025

Ethnocentrism’s Impact on Advance Care Planning

November 18, 2025

Exploring Trends in Infection Control Nursing Research

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    117 shares
    Share 47 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Diversity of 10 DIP-STR Markers in US Groups

ML Unlocks Key SNPs for Population Assignment

Maternal MSG Exposure Triggers Inflammation, Metabolic Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.