• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists discover new gene associated with debilitating lung disease

Bioengineer by Bioengineer
October 23, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Health scientists at the University of Leicester and University of Nottingham have heralded the discovery of a gene associated with lung fibrosis as 'a potential new avenue of treatment for further research into this terrible disease.'

The breakthrough is announced in a paper published in The Lancet Respiratory Medicine.

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating lung disease, affecting ~6,000 new people each year, where scarring (fibrosis) of the lungs makes it difficult to breathe.

IPF, on average, results in death 3 years after diagnosis. There is no cure for IPF, and currently available drugs can only slow the disease down, and do not stop, or reverse, it. Furthermore, some patients may suffer unpleasant side-effects. A better understanding of the disease is needed to develop even more effective treatments.

Researchers Professor Louise Wain from the University of Leicester and Professor Gisli Jenkins from the University of Nottingham were lead authors of the study. They analysed the DNA from over 2700 people with IPF and 8500 people without IPF from around the world and found that people with IPF are more likely to have changes in a gene called AKAP13.

The researchers were also able to show that these DNA changes affect how much AKAP13 protein is produced by the gene in the lungs. Researchers know from other studies, that AKAP13 is part of a biological pathway that promotes fibrosis (or scarring) and importantly that this biological pathway can be targeted with drugs. Taken together, the findings suggest targeting this pathway with drugs in people with IPF might lead to new treatments. To confirm this, the research team now need to undertake more detailed studies into the role of AKAP13 in people with IPF.

The work was led by researchers at Leicester and Nottingham and brought together collaborators from around the world to form the largest combined analysis of people with IPF undertaken to date.

Professor Wain, GSK/British Lung Foundation Chair in Respiratory Research at the University of Leicester, said: "We urgently need new ways to treat this terrible disease. Our findings highlight a potential new avenue for treatment and we now need more research to identify why this gene is important in IPF and how we can use that information to identify new therapies."

Professor Gisli Jenkins, University of Nottingham, said: "What is really exciting about these studies is that this gene affects a pathway that can be targeted by drugs currently in development, opening the door to precision medicine in IPF."

Ian Jarrold, Head of Research at the British Lung Foundation, said: "IPF is a condition with no known cause or cure and we urgently need to change this. Which is why funding for further research and campaigning for greater awareness is so crucial. This study is exciting and demonstrates that there is hope. We look forward to seeing how it develops."

Steve Jones, Chair of Action for Pulmonary Fibrosis, said: "This is important research, which will give hope to the 33,000 people in the UK living with IPF and their families. We need more research like this into the genetic factors underlying the disease and possible treatments."

###

The research was funded by the UK Medical Research Council, NIHR and BLF (and other non-UK funders).

Media Contact

Professor Gisli Jenkins
[email protected]
44-011-582-31711
@UoLNewsCentre

http://www.leicester.ac.uk

https://www2.le.ac.uk/offices/press/press-releases/2017/october/leicester-and-nottingham-scientists-discover-new-gene-associated-with-debilitating-lung-disease

Related Journal Article

http://dx.doi.org/10.1016/S2213-2600(17)30387-9

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.