• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Proteomics

Scientists discover molecular pathway that controls the strength of the immune system

Bioengineer by Bioengineer
September 20, 2013
in Proteomics
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers led by Adrian Liston at VIB and the University of Leuven have discovered the genes that control the number of regulatory T cells in the body, a critical determinant for setting the strength of immune responses. This discovery may be an important starting point for the development of new drugs for the treatment of diseases of the immune system. The research has been published by the prestigious journal Nature Immunology.

In ideal circumstances the immune system is in balance, protecting us from infections and keeping us healthy. This balance can be disrupted, causing diseases of the immune system. An underactive immune system allows infections and tumours to grow, while an overactive immune system can drive allergies and autoimmune diseases such as diabetes and arthritis.

Regulatory T cells are a type of white blood cells that are specialised to keep the immune system in balance. To find out how the right level of balance is achieved, Adrian Liston, an expert in autoimmunity, teamed up with an Australian research group headed by Daniel Gray, an expert on cell death at Australia’s Walter and Eliza Hall Institute. In a 4 year research project funded by the IWT (agency for Innovation by Science and Technology) and the European Research Council, the two research groups found a network of genetic control that determined whether regulatory T cells lived or died, setting the level of immune activity in mice. The genes involved are almost unchanged between mice and humans, providing strong hope that the same pathway is active in patients.

“By working out the genetic control mechanism over regulatory T cell numbers we create a real challenge and opportunity for pharmaceutical researchers”, said Professor Liston. “We now have the blueprint for controlling the level of immune activation. The next step is to identify drugs which influence this system so that we can rectify disturbances when they occur. In theory, such drugs could be used to combat everything from cancer (when the immune system needs to be stimulated to clear cancer cells) to allergies and autoimmune diseases (when the immune system needs to be inhibited).”

Questions
Please address any questions you may have on this medical research to the lead researcher at [email protected].

Publication
The study is published in the leading journal Nature Immunology, Pierson et al., “Mcl-1 is critical for survival and niche-filling capacity of Foxp3+ regulatory T cells”.

Research team
The study was carried out by Adrian Liston’s research group in the VIB Autoimmune Genetics Laboratory, KU Leuven.

Story Source:

The above story is based on materials provided by VIB Life Sciences Research Institute.

Tags: Proteomics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Proteomics identifies DNA repair toolbox

May 5, 2015
blank

First major analysis of Human Protein Atlas published in Science

January 23, 2015

Scientists map one of most important proteins in life

July 22, 2014

Molecular high-speed Origami

May 9, 2014
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut-Brain Link: How NEC Affects Newborn Brains

Microscopy Reveals Details of Anterior Human Eye

Signaling Pathways Drive Cisplatin Resistance via SOX2

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.