• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists discover helium chemistry

Bioengineer by Bioengineer
February 6, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Illustration is provided courtesy of Artem R. Oganov.

Washington, DC/Moscow– Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn't play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness — they don't easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions.

Now, an international team of researchers led by Skoltech's Prof. Artem R. Oganov (also a professor at Stony Brook University and head of Computational Materials Discovery laboratory at Moscow Institute of Physics and Technology) has predicted two stable helium compounds — Na?He and Na?He?O. The scientists experimentally confirmed and theoretically explained the stability of Na?He. This work could hold clues about the chemistry occurring inside gas giant planets and possibly even stars, where helium is a major component. The work is published by Nature Chemistry.

The authors of the study used a crystal structure-predicting tool, the first-principles evolutionary algorithm called USPEX, to conduct a systematic search for stable helium compounds. They predicted the existence of Na?He, which was then successfully synthesized in a diamond anvil cell (DAC) experiment performed at the Carnegie Institution for Science in Washington by Prof. Alexander F. Goncharov and his colleagues. The compound appeared at pressures of about 1.1 million times Earth's atmospheric pressure and is predicted to be stable at least up to 10 million times that.

"The compound that we discovered is very peculiar: helium atoms do not actually form any chemical bonds, yet their presence fundamentally changes chemical interactions between sodium atoms, forces electrons to localize inside cubic voids of the structure and makes this material insulating," says Xiao Dong, the first author of this work, who was a long-term visiting student in Oganov's laboratory at the time when this work was done.

Na?He is what's called an electride, which is a special type of an ionic salt-like crystal. It has a positively charged sublattice of sodium ions and another negatively charged sublattice formed of localized electron pairs. Because electrons are strongly localized, this material is an insulator, meaning that it cannot conduct the free-flowing electrons that make up an electric current.

The other predicted helium compound, Na?He?O, was found to be stable in the pressure range from 0.15 to 1.1 million atmospheres. It is also an ionic crystal with a structure similar to that of Na?He. However, in place of electron pairs, it has negatively charged oxygen in the form of O²?.

"This study shows how new surprising phenomena can be discovered by combination of powerful theoretical methods and state-of-the-art experiments. It shows that very weird chemical phenomena and compounds can emerge at extreme conditions, and the role of such phenomena inside planets needs to be explored," says Oganov.

###

Media Contact

Asya Shepunova
[email protected]
7-916-813-0267
@phystech

https://mipt.ru/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Leading Scientific Breakthroughs Honored at ACC Middle East Conference

October 7, 2025
blank

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

October 7, 2025

Reelin: A Promising Protein for Gut Repair and Depression Treatment

October 7, 2025

FIU Cybersecurity Experts Unveil Midflight Defense Mechanism to Prevent Drone Hijacking

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    889 shares
    Share 355 Tweet 222
  • New Study Reveals the Science Behind Exercise and Weight Loss

    98 shares
    Share 39 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    76 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leading Scientific Breakthroughs Honored at ACC Middle East Conference

Study by SFU and Wageningen University Links River Widening to Increased Severity of Floods

Reelin: A Promising Protein for Gut Repair and Depression Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.