• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists discover genetic ‘off switch’ in legume plants that limits biological ability to source nutrients

by
June 26, 2024
in Chemistry
Reading Time: 4 mins read
0
Scientists discover genetic ‘off switch’ in legume plants that limits biological ability to source nutrients
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A genetic “off switch” that shuts down the process in which legume plants convert atmospheric nitrogen into nutrients has been identified for the first time by a team of international scientists.

Scientists discover genetic ‘off switch’ in legume plants that limits biological ability to source nutrients

Credit: Dugald Reid

A genetic “off switch” that shuts down the process in which legume plants convert atmospheric nitrogen into nutrients has been identified for the first time by a team of international scientists.

Legumes like beans, peas and lentils are unique among crops for their ability to interact with soil bacteria to convert or “fix” nitrogen into a usable form of nutrients. However, this energy-intensive biological process is reduced when nitrogen is already abundant in the soil either through natural processes or through the application of synthetic fertiliser.

The latest discovery of the genetic regulator that turns off nitrogen fixation when soil nitrate levels are high allowed scientists to remove the gene in model legumes, ensuring they continued to fix nitrogen regardless of the soil environment.

Increasing the biological ability of legumes to fix nitrogen could help increase crop growth and yield while also reducing the need for synthetic fertilisers, which contribute to agriculture’s environmental footprint.

The results of the research, which was carried out as part of the international Enabling Nutrient Symbioses in Agriculture (ENSA) project, were published in Nature.

“From an agricultural perspective, continued nitrogen fixation could be a beneficial trait that increases nitrogen availability, both for the legume and for future crops that rely on the nitrogen left behind in the soil after legumes are grown,” said lead author Dr Dugald Reid, La Trobe University lecturer and research group leader in La Trobe Institute for Sustainable Agriculture and Food (LISAF) and the Department of Animal Plant and Soil Science, and ENSA researcher.

“This helps lay the foundations for future research that provides new ways for us to manage our farming systems to reduce nitrogen fertiliser use, increase farm incomes and reduce the impact of nitrogen fertiliser use on the environment.”

The ENSA project is currently funded by Bill & Melinda Gates Agricultural Innovations (Gates Ag One), a non-profit organisation that invests in breakthrough agricultural research to meet the urgent and neglected needs of smallholder farmers in sub-Saharan Africa and South Asia.

The team discovered the regulator known as “Fixation Under Nitrate” (FUN) after screening 150,000 individual legume plants in which genes had been knocked out to identify how plants control the switch from nitrogen fixation to soil nitrogen uptake.

FUN, which is a type of gene known as a transcription factor and controls the levels of other genes, was found to be present in legumes regardless of whether it was active or inactive, and irrespective of nitrogen levels.

“As part of the study, we designed a genetic screen for thousands of plants in greenhouses to identify the genes that connect environmental triggers with biological signals,” said Dr Jieshun Lin, co-author of the paper and ENSA researcher.

“By increasing the nitrate levels available to the model legume, we were able to identify those with impaired nitrogen fixing regulation, and uncover the FUN mutant.”

The team then used a combination of biochemistry, gene expression studies and microscopy to find that FUN forms into long protein filaments when it is inactive.

This led to the secondary discovery that zinc levels play a role in triggering FUN to become active and shut down nitrogen fixation.

“We found that changing soil nitrogen alters the levels of zinc in the plant. Zinc had not previously been linked to the regulation of nitrogen fixation, but our study found that a change in zinc levels in turn activates FUN, which then controls a large number of genes that shut down nitrogen fixation,” said Dr Kasper Andersen, co-author and ENSA researcher.

“Removing FUN therefore creates a condition in which nitrogen fixation is no longer shut down by the plant.”

The study was led by scientists from La Trobe University, Australia and Aarhus University, Denmark and involved collaborations with the European Synchrotron Radiation Facility (ESRF), Centro de Biotecnología y Genómica de Plantas, Spain and Universidad Politécnica de Madrid (UPM).

The researchers are now investigating how common legume crops such as soybean and cowpea perform when they lose FUN activity.

MEDIA CONTACTS

Charisse Ede

La Trobe University

[email protected]

+61 404 030 698

 

Donna Bowater

Marchmont Communications

[email protected] 

+61 434 634 099



Journal

Nature

DOI

10.1038/s41586-024-07607-6

Method of Research

Randomized controlled/clinical trial

Subject of Research

Not applicable

Article Title

Zinc mediates control of nitrogen fixation via transcription factor filamentation

Article Publication Date

26-Jun-2024

COI Statement

Aarhus University has filed US provisional patent application 63/483,248
authored by J.L., P.K.B., J.S., K.R.A. and D.R. on use of the FUN gene and downstream targets to
improve nitrogen fixation in legumes. The other authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.