• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists discover genes are controlled by ‘nano footballs’

Bioengineer by Bioengineer
September 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research at the University of York has revealed that genes are controlled by 'nano footballs' – structures that look like footballs but 10 million times smaller than the average ball.

By placing tiny glowing probes on transcription factors – special chemicals inside cells which control whether a gene is switched 'on' or 'off' – researchers gained a remarkable new insight into the way in which genes are controlled.

Crucially, they discovered that transcription factors operate not as single molecules as was previously thought, but as a spherical football-like cluster of around seven to ten molecules of roughly 30 nanometres in diameter.

The discovery of these nano footballs will not only help researchers understand more about the basic ways in which genes operate, but may also provide important insights into human health problems associated with a range of different genetic disorders, including cancer.

The research, supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and published in eLife was carried out by scientists from the University of York, and the University of Gothenburg and Chalmers University of Technology, Sweden. The researchers employed advanced super-resolution microscopy to look at the nano footballs in real time, using the same type of yeast cells utilised in baking and brewing beer.

Professor Mark Leake, Chair of Biological Physics at the University of York who led the work, said: "Our ability to see inside living cells, one molecule at a time, is simply breathtaking.

"We had no idea that we would discover that transcription factors operated in this clustered way. The textbooks all suggested that single molecules were used to switch genes on and off, not these crazy nano footballs that we observed."

The team believe the clustering process is due to an ingenious strategy of the cell to allow transcription factors to reach their target genes as quickly as possible.

Professor Leake said: "We found out that the size of these nano footballs is a remarkably close match to the gaps between DNA when it is scrunched up inside a cell. As the DNA inside a nucleus is really squeezed in, you get little gaps between separate strands of DNA which are like the mesh in a fishing net. The size of this mesh is really close to the size of the nano footballs we see.

"This means that nano footballs can roll along segments of DNA but then hop to another nearby segment. This allows the nano football to find the specific gene it controls much more quickly than if no nano hopping was possible. In other words, cells can respond as quickly as possible to signals from the outside, which is an enormous advantage in the fight for survival."

Genes are made from DNA, the so-called molecule of life. Since the discovery that DNA has a double helix shape, made in the 1950s by pioneering biophysics researchers, much has been learned about transcription factors which can control whether a gene is switched on or off. If a gene is switched on, specialised molecular machinery in the cell reads off its genetic code and converts it into a single protein molecule. Thousands of different types of protein molecules can then be made, and when they interact that can drive the building of all of the remarkable structures found inside living cells.

The process of controlling which genes are switched on or off at any particular point in time is fundamental to all life. When it goes wrong, this can lead to serious health problems. In particular, dysfunctional switching of genes can result in cells which grow and divide uncontrollably, which can ultimately lead to cancer.

This new research may help provide insights into human health problems associated with a range of different genetic disorders. The next stages will be to extend this research into more complicated types of cells than yeast – and ultimately into human cells.

###

Media Contact

Caron Lett
[email protected]
44-019-043-23918
@uniofyork

http://www.york.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

September 12, 2025
blank

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gal-9 on Leukemia Stem Cells Predicts Prognosis

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.