• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists discover concussion biomarker

Bioengineer by Bioengineer
December 22, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

EVANSTON, Ill. — The secret to reliably diagnosing concussions lies in the brain's ability to process sound, according to a new study by researchers from Northwestern University's Auditory Neuroscience Laboratory.

Widely considered a crisis in professional sports and youth athletic programs, sports-related concussions have had devastating neurological, physical, social and emotional consequences for millions of athletes. Still, no single test has been developed to reliably and objectively diagnose concussions.

The groundbreaking research, to be published Dec. 22 in the journal Nature, Scientific Reports, has found a biological marker in the auditory system that could take the ambiguity and controversy out of diagnosing concussions and tracking recovery.

"This biomarker could take the guesswork out of concussion diagnosis and management," said lead author Nina Kraus, the Hugh Knowles Professor in the School of Communication and director of the Auditory Neuroscience Laboratory. "Our hope is this discovery will enable clinicians, parents and coaches to better manage athlete health, because playing sports is one of the best things you can do."

By observing research subjects' brain activity as they were exposed to auditory stimuli, Kraus and her team discovered a distinct pattern in the auditory response of children who suffered concussions compared to children who had not.

Kraus and colleagues placed three simple sensors on children's heads to measure the frequency following response, which is the brain's automatic electric reaction to sound. With this measure they successfully identified 90 percent of children with concussions and 95 percent of children in the control group who did not have concussions.

Children who sustained concussions had on average a 35 percent smaller neural response to pitch, allowing the scientists to devise a reliable signature neural profile. As the children recovered from their head injuries, their ability to process pitch returned to normal.

"Making sense of sound requires the brain to perform some of the most computationally complex jobs it is capable of, which is why it is not surprising that a blow to the head would disrupt this delicate machinery," Kraus said.

What was surprising, Kraus said, was the specificity of the findings.

"This isn't a global disruption to sound processing," she said. "It's more like turning down a single knob on a mixing board."

Kraus is a biologist who studies the auditory system, which is at the nexus of our cognitive, sensory and limbic systems. She described the research findings — based on a small study of 40 children being treated for concussion and a control group — as a major first step.

Dr. Cynthia LaBella, the director of the Institute of Sports Medicine at the Ann and Robert H. Lurie Children's Hospital of Chicago and professor of pediatrics at Northwestern University Feinberg School of Medicine, is Kraus' partner in the research.

"Our ambition is to produce a reliable, objective, portable, user-friendly, readily available and affordable platform to diagnose concussion," Kraus said.

Concussions, a type of mild traumatic brain injury, are the result of a direct or indirect blow to the head that causes the brain to be jostled within the skull. But there is little relation between the force of an impact and the potential for injury — two athletes can suffer similar hits but experience vastly different outcomes.

"With this new biomarker, we are measuring the brain's default state for processing sound and how that has changed as a result of a head injury," Kraus said. "This is something patients cannot misreport, you cannot fake it or will your brain to perform better or worse."

###

See demonstration of the Auditory Neuroscience Laboratory's "biological approach" at http://www.brainvolts.northwestern.edu.

Media Contact

Erin Karter
[email protected]
847-497-1569
@northwesternu

http://www.northwestern.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

October 10, 2025

Linking COPD, Cardiovascular Admissions to Referral Compliance

October 10, 2025

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

October 10, 2025

Bifidobacterium adolescentis SPM2022 Shows Anti-Obesity Effects

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1185 shares
    Share 473 Tweet 296
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

Linking COPD, Cardiovascular Admissions to Referral Compliance

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.