• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists discover a protein that naturally enhances wheat resistance to head scab

Bioengineer by Bioengineer
May 25, 2021
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: John McLaughlin

Fusarium Head Blight (FHB), also known as scab, is a significant disease of small grain cereals, such as wheat and barley, that impacts farmers around the world. The disease has been reducing acreage and increasing the price of wheat production in the United States since the early 1990s, which in turn increases costs for downstream producers, such as millers and brewers.

The disease is caused by a fungus that produces heat-stable trichothecene mycotoxins, which help the disease spread. To stop the spread, plant breeders are working to develop cultivars with improved resistance to FHB. A team of plant pathologists primarily based at Rutgers University recently generated wheat overexpressing two non-specific lipid transfer proteins and found that this enhanced protection against the fungus and led to a reduction of one of the major mycotoxins.

“We found that the AtLTp4.4 protein, from the large gene family of nsLTPs, had both antifungal and antioxidant properties,” said John McLaughlin. “This is the first study to show that nsLTPs have dual functions and the first study to explore how these functions contribute to FHB-resistance in wheat.”

The discovery that genes like nsLTPs can improve FHB-resistance in wheat adds to the catalog of genes that plant breeders can use in their breeding programs. This discovery also opens new research avenues for McLaughlin and his colleagues.

“We are exploring if nsLTP overexpression in barley can impact FHB resistance and if the increase of nsLTPs in the grain improves the antioxidant properties of malt,” said McLaughlin. “Additionally, nsLTPs are predicted to improve beer shelf life and flavor stability, and we will be testing that.”

Their research also highlights the need to better understand the connection between the induction of reactive oxygen species and mycotoxin production/accumulation in small grain cereals as the scientists found that application of trichothecenes to wheat leaf tissue and the accumulation of reactive oxygen species, independent of the fungus, can be significantly impacted by the overexpression of nsLTPs.

“Our research shows that gain-of-function mutants can be used to enhance plant disease resistance, and our article shows some of the techniques involved to explore the mechanisms of disease resistance,” McLaughlin added.

###

For more information, read “A Lipid Transfer Protein has Antifungal and Antioxidant Activity and Suppresses Fusarium Head Blight Disease and DON Accumulation in Transgenic Wheat” published in the April issue of Phytopathology.

Media Contact
Ashley Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PHYTO-04-20-0153-R

Tags: Agricultural Production/EconomicsAgricultureBiologyEcology/EnvironmentFood/Food ScienceGenesGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025
Cracking the Code of Cancer Drug Resistance

Cracking the Code of Cancer Drug Resistance

July 29, 2025

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.