• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists develop way to perform supercomputer simulations of the heart on cellphones

Bioengineer by Bioengineer
March 29, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

RIT associate professor Elizabeth Cherry helped develop the cardiac dynamics modeling method

You can now perform supercomputer simulations of the heart’s electrophysiology in real time on desktop computers and even cellphones. A team of scientists from Rochester Institute of Technology and Georgia Tech developed a new approach that can not only help diagnose heart conditions and test new treatments, but pushes the boundaries of cardiac science by opening up a floodgate of new cardiac research and education.

Heart disease is the leading cause of death worldwide, and cardiac dynamics modeling can be useful in the study and treatment of heart problems like arrhythmias. However, due to the complex electrophysiology of heart cells and tissue, modeling conditions like arrhythmias requires solving billions of differential equations and previously has been limited to only those with access to supercomputers.

“This opens up a lot of new research opportunities, including for RIT undergraduates,” said Elizabeth Cherry, associate professor and director of RIT’s mathematical modeling program and co-author of a new Science Advances article that introduces the new methodology. “I felt really restricted in what I could ask undergraduates to do in Research Experiences for Undergraduates programs or even our full-time students because the previous supercomputer simulations took so long. But now they can work with these complex models in real-time so it opens up a whole new world of opportunities to what they can study.”

In hospital settings, the real-time models could allow doctors to have better discussions with their patients about life-threatening heart conditions.

“This visualization can be very useful for doctors to address a variety of cardiac problems,” said Abouzar Kaboudian, a research scientist at Georgia Tech and co-author. “For example, a doctor can see what would happen if a pacemaker was placed on a particular location of the heart. Or, if the structure from CT scan data was available to a doctor, they could import the structural data for a particular patient and see what would cause an arrhythmia and what would be the course of action to eliminate the arrhythmia.”

The novel approach relies on using WebGL code to repurpose graphics cards to perform calculations that speed up the scientific computing applications. The researchers developed a library that allows for high-performance computing of complex problems that require large-scale simulations to run them. Their streamlined methodology allows users to solve problems as fast as a supercomputer in web browsers that they are already familiar with.

“This opens the door to the possibility of doing patient-specific modeling in a reasonable way,” said co-author Flavio Fenton, professor of physics at Georgia Tech. “There are many problems related to trying to solve these complex models for clinical use, but one of the big bottlenecks was performing these high-performance computing real-time simulations of complex models of the heart. Now they can be done.”

###

The study was published in Science Advances. For more information, go to http://advances.sciencemag.org/.

For more information, contact Luke Auburn at 585-475-4335, [email protected] or on Twitter: @lukeauburn.

Media Contact
Luke Auburn
[email protected]
https://www.rit.edu/news/scientists-develop-way-perform-supercomputer-simulations-heart-cellphones

Tags: Algorithms/ModelsCalculations/Problem-SolvingCardiologyDiagnosticsMathematics/Statistics
Share13Tweet7Share2ShareShareShare1

Related Posts

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025
blank

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.