• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists Develop Technique to Halt Ultrafast Silicon Melting with Precision Laser Pulses

Bioengineer by Bioengineer
August 7, 2025
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

blank

In a groundbreaking advance at the intersection of ultrafast physics and materials science, an international team of physicists has unveiled a novel method to temporarily arrest the ultrafast melting process of silicon by employing a precisely orchestrated sequence of femtosecond laser pulses. This innovative approach represents a significant leap forward in the ability to manipulate material phases on timescales shorter than a trillionth of a second, opening up transformative possibilities for the control of phase transitions and the exploration of nonequilibrium states in condensed matter systems.

Silicon, the semiconductor backbone of modern electronics and photovoltaic technologies, typically undergoes an ultrafast phase transition known as nonthermal melting when subjected to a single, intense ultrashort laser pulse. Unlike traditional melting, which is thermally driven by lattice heating, nonthermal melting occurs as a direct consequence of the rapid excitation of electrons, leading to a destabilization of the atomic lattice before any significant temperature rise. This process unfolds on the order of femtoseconds, making real-time observation and control an extraordinary challenge.

Leveraging advanced ab initio molecular dynamics simulations—theoretically rigorous computational models based on fundamental quantum mechanical principles—the researchers simulated the atomic trajectories and electronic responses of silicon subjected to engineered laser pulse sequences. Their findings reveal that delivering two laser pulses with an exquisitely timed delay of approximately 126 femtoseconds can interrupt the onset of nonthermal melting. The first pulse initiates atomic displacements by promoting electrons to excited states, setting the lattice into motion. However, the subsequent pulse interacts with these atomic vibrations, effectively imposing a counteracting influence that ‘locks’ the system into a metastable solid state instead of allowing it to smoothly transition to a molten phase.

.adsslot_YesVZygx4I{width:728px !important;height:90px !important;}
@media(max-width:1199px){ .adsslot_YesVZygx4I{width:468px !important;height:60px !important;}
}
@media(max-width:767px){ .adsslot_YesVZygx4I{width:320px !important;height:50px !important;}
}

ADVERTISEMENT

This metastable state’s stability is not merely a transient pause but a distinct non-equilibrium phase characterized by unique electronic and vibrational properties. Remarkably, the band gap—the energy range where no electron states exist—remains only slightly reduced from that of crystalline silicon, a crucial factor governing the material’s electrical conductivity and optical behavior. Additionally, the vibrational modes of the lattice, represented by phonons, exhibit cooler and more coherent dynamics, as if the atomic motion is ‘frozen’ by the second laser pulse’s interference. This dynamic manipulation of phonons highlights a new realm of controlling lattice energy and heat flow at ultrafast timescales.

The implications of this study are manifold. By demonstrating a method to precisely control phase transitions in silicon on femtosecond timescales, the research sets the stage for similar experimental strategies to be applied across a spectrum of technologically relevant materials. The ability to temporally halt or steer ultrafast melting provides a powerful tool for creating and stabilizing new phases that are inaccessible under equilibrium conditions, potentially enabling novel material properties tailored by light.

Moreover, this approach could revolutionize ultrafast spectroscopy experiments, where understanding energy transfer pathways between electrons and atomic nuclei remains a fundamental challenge. Temporally freezing the lattice motion allows researchers to isolate and study electron dynamics without the concurrent complications of structural rearrangement, thus enhancing the accuracy and interpretability of ultrafast measurements. This methodological breakthrough promises to deepen our grasp of fundamental light–matter interactions, a domain critical for the advancement of quantum technologies and high-speed optoelectronic devices.

The success of this elaborate pulse-timing scheme rests on an intricate interplay of quantum mechanics and lattice dynamics. The initial pulse deposits energy into the electronic subsystem, elevating electrons to excited states that weaken interatomic bonds. Prior to atomic disordering, the delayed second pulse arrives, synchronized with the oscillatory atomic motions induced by the first excitation. This carefully timed interaction suppresses the lattice instability that would otherwise cascade into melting, effectively leveraging quantum coherence and constructive interference principles to guide the system

Tags: advanced molecular dynamics simulationscondensed matter systemscontrol of material phasesfemtosecond laser pulsesmanipulation of electronic statesnonthermal melting of siliconphase transitions in materialsquantum mechanical simulationsreal-time observation of phase transitionssemiconductor technology advancementssilicon melting processultrafast physics

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Immobilized Reactors Revolutionize Sterically Hindered Peptide Synthesis

August 7, 2025
blank

Breakthrough in Green Chemistry: Efficient Low-Temperature Oxidation Makes Processes Cleaner, Cooler, and More Affordable

August 7, 2025

Chiral Induction in Metal-Containing Dyes Achieved Through Simple Encapsulation

August 7, 2025

Exploring the Limits of Nuclear Stability: Multi-Step Fragmentation of High-Energy Projectiles in Thick Targets

August 7, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Co-cultivating Pseudomonas and Bacillus for Enhanced Biocontrol

Rewrite Behavioral, Psychological, and Physical Predictors of Adolescent Drug Use in South Korea: Insights Obtained Using Machine Learning as a headline for a science magazine post, using no more than 8 words

Rewrite Active ingredients, nutrition values and health-promoting effects of aboveground parts of rhubarb: a review as a headline for a science magazine post, using no more than 8 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.